ಸೌರವ್ಯೂಹದ ರಚನೆ ಮತ್ತು ವಿಕಾಸ

ವಿಕಿಪೀಡಿಯ ಇಂದ
ಇಲ್ಲಿಗೆ ಹೋಗು: ಸಂಚರಣೆ, ಹುಡುಕು

[ashok naik [File:Protoplanetary-disk.jpg|thumb|300px|ಕಲಾವಿದನ ಕಲ್ಪನೆಯ ಪ್ರೊಟೊಪ್ಲಾನಟರಿ ತಟ್ಟೆ(ಗ್ರಹಗಳು ರಚನೆಯಾಗುವ ಮುಂಚಿನ ಅನಿಲ,ಧೂಳಿನ ತಟ್ಟೆ)]]

ಸೌರವ್ಯೂಹದ ರಚನೆ ಮತ್ತು ವಿಕಾಸವು 4.568 ಶತಕೋಟಿ ವರ್ಷಗಳ ಹಿಂದೆ ಆರಂಭವಾಯಿತೆಂದು ಅಂದಾಜು ಮಾಡಲಾಗಿದೆ. ಬೃಹತ್ ಆಣ್ವಿಕ ಮೋಡದ ಸಣ್ಣ ಭಾಗವು ಗುರುತ್ವದಿಂದ ಕುಸಿತವುಂಟಾಗಿ ಸೌರವ್ಯೂಹ ರಚನೆಯಾಯಿತು.[೧]

ಕುಸಿತಗೊಂಡ ಬಹುತೇಕ ದ್ರವ್ಯರಾಶಿ ಮಧ್ಯಭಾಗದಲ್ಲಿ ಸಂಗ್ರಹವಾಗಿ ಸೂರ್ಯನನ್ನು ನಿರ್ಮಾಣ ಮಾಡಿತು. ಉಳಿದವು ಪ್ರೋಟೊಪ್ಲ್ಯಾನೆಟರಿ ಡಿಸ್ಕ್(ನಕ್ಷತ್ರವೊಂದರ ಸುತ್ತ ತಿರುಗುವ ಅನಿಲ,ದೂಳಿನ ಚಪ್ಪಟೆಯ ತಟ್ಟೆ) ಆಕಾರ ತಳೆಯಿತು. ಅದರಿಂದ ಗ್ರಹಗಳು, ಚಂದ್ರರು, ಕ್ಷುದ್ರಗ್ರಹಗಳು ಮತ್ತು ಇತರೆ ಸಣ್ಣ ಸೌರವ್ಯೂಹದ ಕಾಯಗಳು ರಚನೆಯಾದವು.

ನೆಬ್ಯೂಲಾರ್ ಹೈಪೋಥಿಸಿಸ್(ನೀಹಾರಿಕೆಯ ಸಿದ್ಧಾಂತ)ಎಂದು ಹೆಸರಾದ ವ್ಯಾಪಕವಾಗಿ ಅಂಗೀಕೃತವಾದ ಮಾದರಿಯನ್ನು 18ನೇ ಶತಮಾನದಲ್ಲಿ ಇಮ್ಯಾನ್ಯುಯಲ್ ಸ್ವೀಡನ್‌ಬರ್ಗ್ ಇಮ್ಯಾನ್ಯುಯಲ್ ಕ್ಯಾಂಟ್ ಮತ್ತು ಪಿಯರೆ ಸೈಮನ್ ಲ್ಯಾಪ್ಲೇಸ್ ಅಭಿವೃದ್ಧಿಪಡಿಸಿದರು. ಇದರ ತರುವಾಯದ ಅಭಿವೃದ್ಧಿಯು ಖಗೋಳಶಾಸ್ತ್ರ, ಭೌತಶಾಸ್ತ್ರ, ಭೂಗೋಳಶಾಸ್ತ್ರ ಮತ್ತು ಗ್ರಹವಿಜ್ಞಾನ ಸೇರಿದಂತೆ ವಿವಿಧ ವೈಜ್ಞಾನಿಕ ಶಿಕ್ಷಣ ವಿಷಯಗಳನ್ನು ಒಟ್ಟಿಗೆ ಹೆಣೆದಿದೆ. 1950ರ ದಶಕದಲ್ಲಿ ಬಾಹ್ಯಾಕಾಶ ಯುಗದ ಉದಯದಿಂದ ಮತ್ತು 1990ರ ದಶಕದಲ್ಲಿ ಸೌರಾತೀತ ಗ್ರಹಗಳ ಶೋಧನೆಯಿಂದ ಮಾದರಿಗಳನ್ನು ಪ್ರಶ್ನಿಸಲಾಗಿದೆ ಹಾಗು ಹೊಸ ಅವಲೋಕನಗಳಿಗೆ ಕಾರಣ ವಿವರಿಸುವುದಕ್ಕಾಗಿ ಪರಿಷ್ಕರಿಸಲಾಗಿದೆ.

ಆರಂಭಿಕ ರಚನೆಯಾದಾಗಿನಿಂದ ಸೌರವ್ಯೂಹವು ಗಣನೀಯವಾಗಿ ವಿಕಾಸಗೊಂಡಿದೆ. ಮಾತೃ ಗ್ರಹಗಳ ಸುತ್ತಲು ಸುತ್ತುತ್ತಿರುವ ಅನಿಲ ಮತ್ತು ಧೂಳಿನಿಂದ ಕೂಡಿದ ಚಪ್ಪಟೆಯಾಕಾರದ ತಟ್ಟೆಗಳಿಂದ ಅನೇಕ ಚಂದ್ರರ ರಚನೆಯಾಯಿತು. ಇತರ ಚಂದ್ರರು ಸ್ವತಂತ್ರವಾಗಿ ರಚನೆಗೊಂಡಿವೆ ಹಾಗು ಅನಂತರ ಇವುಗಳನ್ನು ಅವುಗಳ ಗ್ರಹಗಳು ಸೆರೆಹಿಡಿದಿವೆ ಎಂದು ನಂಬಲಾಗಿದೆ. ಭೂಮಿಚಂದ್ರನಂತಹ ಇತರ ಚಂದ್ರರು ಬಹುಶಃ ದೈತ್ಯಕಾರದ ಗ್ರಹಗಳ ಡಿಕ್ಕಿಯಿಂದಾಗಿ ರಚನೆಗೊಂಡಿರಬಹುದು. ಕಾಯಗಳ ನಡುವೆ ಡಿಕ್ಕಿಯು ಪ್ರಸ್ತುತ ದಿನದವರೆಗೆ ಸತತವಾಗಿ ಸಂಭವಿಸಿರಬಹುದು ಮತ್ತು ಸೌರವ್ಯೂಹದ ವಿಕಾಸಕ್ಕೆ ಕೇಂದ್ರವಾಗಿದೆ.

 ಗ್ರಹಗಳ ಸ್ಥಾನಗಳು ಆಗಾಗ್ಗೆ ಸ್ಥಳಾಂತರಗೊಂಡಿದ್ದು, ಗ್ರಹಗಳು ಸ್ಥಾನಗಳನ್ನು ಬದಲಾಯಿಸಿಕೊಂಡಿವೆ.[೨] ಈ ಗ್ರಹಗಳ ವಲಸೆಯನ್ನು ಸೌರವ್ಯೂಹದ ಮುಂಚಿನ ವಿಕಾಸಕ್ಕೆ ಕಾರಣವೆಂದು ನಂಬಲಾಗಿದೆ.

ಸುಮಾರು 5 ಶತಕೋಟಿ ವರ್ಷಗಳಲ್ಲಿ ಸೂರ್ಯನು ತಂಪಾಗಿ ತನ್ನ ಪ್ರಸಕ್ತ ವ್ಯಾಸವನ್ನು ಹೊರಗಡೆ ಅನೇಕ ಪಟ್ಟು ವಿಸ್ತರಿಸುತ್ತದೆ(ಕೆಂಪು ದೈತ್ಯ ನಕ್ಷತ್ರವಾಗುತ್ತದೆ) ಹಾಗು ತನ್ನ ಹೊರ ಪದರವನ್ನು ಗ್ರಹ ನೀಹಾರಿಕೆಯಾಗಿ ಎರಚುತ್ತದೆ ಹಾಗು ಶ್ವೇತ ಕುಬ್ಜತಾರೆ ಎಂದು ಹೆಸರಾದ ನಾಕ್ಷತ್ರಿಕ ಅವಶೇಷವನ್ನು ಹಿಂದೆ ಬಿಡುತ್ತದೆ. ದೂರದ ಭವಿಷ್ಯದಲ್ಲಿ, ಹಾದುಹೋಗುವ ನಕ್ಷತ್ರಗಳ ಗುರುತ್ವವು ಕ್ರಮೇಣ ಸೂರ್ಯನ ಗ್ರಹಗಳ ಪರಿವಾರವನ್ನು ಕುಗ್ಗಿಸುತ್ತದೆ. ಕೆಲವು ಗ್ರಹಗಳು ನಾಶವಾಗುತ್ತವೆ, ಇತರೆ ಗ್ರಹಗಳು ಅಂತರತಾರಾ ಬಾಹ್ಯಾಕಾಶದಲ್ಲಿ ಚಿಮ್ಮುತ್ತವೆ. ಅಂತಿಮವಾಗಿ ಒಂದು ಲಕ್ಷ ಕೋಟಿ ವರ್ಷಗಳ ಕಾಲಾವಧಿಯಲ್ಲಿ ಸೂರ್ಯನು ಏಕಾಂಗಿಯಾಗಿ ಅದರ ಸುತ್ತ ಕಕ್ಷೆಯಲ್ಲಿ ಯಾವುದೇ ಕಾಯಗಳು ಇರುವುದಿಲ್ಲ.[೩]

ಇತಿಹಾಸ[ಬದಲಾಯಿಸಿ]

ನೀಹಾರಿಕೆ ಸಿದ್ಧಾಂತದ ಪ್ರವರ್ತಕರಲ್ಲಿ ಒಬ್ಬರಾದ ಪೀರೆ-ಸೈಮನ್ ಲ್ಯಾಪ್ಲೇಸ್

ವಿಶ್ವದ ಹುಟ್ಟು ಮತ್ತು ಭವಿಷ್ಯದ ಬಗ್ಗೆ ಕಲ್ಪನೆಗಳು ಮುಂಚಿನ ತಿಳಿದುಬಂದಿರುವ ಬರಹಗಳ ಕಾಲದಲ್ಲಿ ಉಂಟಾಯಿತು. ಆದಾಗ್ಯೂ, ಬಹುಮಟ್ಟಿನ ಆ ಕಾಲಾವಧಿಯಲ್ಲಿ, ಇಂತಹ ಸಿದ್ಧಾಂತಗಳನ್ನು ಸೌರವ್ಯೂಹದ ಅಸ್ತಿತ್ವಕ್ಕೆ ಕೊಂಡಿ ಕಲ್ಪಿಸುವ ಯತ್ನ ನಡೆಯಲಿಲ್ಲ. ಏಕೆಂದರೆ ಈಗ ನಾವು ಅರ್ಥಮಾಡಿಕೊಂಡಿರುವ ಸೌರವ್ಯೂಹ ಅಸ್ತಿತ್ವಲ್ಲಿತ್ತೆಂದು ಸಾಮಾನ್ಯವಾಗಿ ನಂಬಿಕೆಯಾಗಿರಲಿಲ್ಲ. ಸೌರವ್ಯೂಹದ ರಚನೆ ಮತ್ತು ವಿಕಾಸದ ಸಿದ್ಧಾಂತದತ್ತ ಪ್ರಥಮ ಹೆಜ್ಜೆಯು ಹೀಲಿಯೊಸೆಂಟ್ರಿಸಮ್(ಸೂರ್ಯನ ಸುತ್ತ ಭೂಮಿ ಮತ್ತು ಗ್ರಹಗಳ ಪರಿಭ್ರಮಣೆ)ನ ಕುರಿತು ಸಾಮಾನ್ಯ ಒಪ್ಪಿಗೆಯಾಗಿದೆ. ಇದರಲ್ಲಿ ಸೂರ್ಯನನ್ನು ಸೌರವ್ಯೂಹದ ಕೇಂದ್ರಭಾಗದಲ್ಲಿರಿಸುತ್ತದೆ ಮತ್ತು ಭೂಮಿಯು ಅದರ ಸುತ್ತ ಕಕ್ಷೆಯಲ್ಲಿ ಪರಿಭ್ರಮಿಸುತ್ತದೆ. ಈ ಪರಿಕಲ್ಪನೆಯು ಸಹಸ್ರಮಾನದ ಹುಟ್ಟಿಗೆ ಕಾರಣವಾಯಿತು.(ಕ್ರಿ.ಪೂ.600ರಷ್ಟು ಮುಂಚಿತವಾಗಿ ತತ್ವಶಾಸ್ತ್ರಜ್ಞರಾದ ಅರಿಸ್ಟಾಕ್ರಸ್ ಆಫ್ ಸ್ಯಾಮೋಸ್ ಇದನ್ನು ಸೂಚಿಸಿದ್ದರು) ಆದರೆ 17ನೇ ಶತಮಾನದ ಅಂತ್ಯದಲ್ಲಿ ಮಾತ್ರ ಅದನ್ನು ವ್ಯಾಪಕವಾಗಿ ಸ್ವೀಕರಿಸಲಾಯಿತು. ಸೌರವ್ಯೂಹ ಪದದ ದಾಖಲಿತ ಬಳಕೆಯು 1704ರಷ್ಟು ಹಿಂದಿನದ್ದಾಗಿದೆ.[೪]

ಇಮ್ಯಾನುಯಲ್ ಸ್ವೀಡನ್‌ಬರ್ಗ್, ಇಮ್ಯಾನುಯಲ್ ಕಾಂಡ್ , ಮತ್ತು ಪೀರೆ-ಸೈಮನ್ ಲ್ಯಾಪ್ಲೇಸ್ 18ನೇ ಶತಮಾನದಲ್ಲಿ ಸೌರವ್ಯೂಹದ ರಚನೆಯಾದ ನೀಹಾರಿಕೆ ಸಿದ್ಧಾಂತ(ನೆಬ್ಯೂಲಾರ್ ಹೈಪೋತಿಸಿಸ್)ದ ಪ್ರಸಕ್ತ ಪ್ರಮಾಣಕ ಸಿದ್ಧಾಂತವನ್ನು ಪ್ರತಿಪಾದನೆ ಮಾಡಿದಾಗಿನಿಂದ ಒಲವನ್ನು ಕಳೆದುಕೊಂಡಿತ್ತು. ಈ ಸಿದ್ಧಾಂತದಲ್ಲಿ ಕೇಳಿಬಂದ ಗಮನಾರ್ಹ ಟೀಕೆಯು ಗ್ರಹಗಳಿಗೆ ಹೋಲಿಸಿದರೆ ಸೂರ್ಯನಿಗೆ ಸಂಬಂಧಿಸಿದಂತೆ ಕೋನಯುತ ಆವೇಗದ ಕೊರತೆಯನ್ನು ವಿವರಿಸುವ ಅಸಾಮರ್ಥ್ಯವಾಗಿದೆ.[೫] ಆದಾಗ್ಯೂ,1980ರ ದಶಕದ ಮುಂಚಿನ ಅಧ್ಯಯನಗಳಲ್ಲಿ, ನೀಹಾರಿಕೆ ಸಿದ್ಧಾಂತ ಮುನ್ನುಡಿದಂತೆ, ಕಿರಿಯ ನಕ್ಷತ್ರಗಳು ಧೂಳು ಮತ್ತು ಅನಿಲದ ತಂಪಾದ ತಟ್ಟೆಗಳಿಂದ ಸುತ್ತುವರಿದಿದ್ದನ್ನು ತೋರಿಸಿದ್ದು, ಈ ಸಿದ್ಧಾಂತವವನ್ನು ಪುನಃ ಒಪ್ಪಿಕೊಳ್ಳಲು ದಾರಿ ಕಲ್ಪಿಸಿತು.[೬]

ಸೂರ್ಯನು ವಿಕಾಸವನ್ನು ಹೇಗೆ ಮುಂದುವರಿಸಿತು ಎಂದು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವ ಮುಂಚೆ ಅದರ ಶಕ್ತಿಯ ಮೂಲವನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು ಅಗತ್ಯವಾಗಿದೆ. ಆರ್ಥರ್ ಸ್ಟಾನ್ಲಿ ಎಡ್ಡಿಂಗ್‌ಟನ್‌ರಿಂದ ಆಲ್ಬರ್ಟ್ ಐನ್‌ಸ್ಟನ್‌ರ ಸಾಪೇಕ್ಷತಾ ಸಿದ್ಧಾಂತದ ದೃಢೀಕರಣವು ಸೂರ್ಯನ ಶಕ್ತಿಯು ಅದರ ಮಧ್ಯಭಾಗ(ತಿರುಳು)ದಲ್ಲಿ ಬೈಜಿಕ ಸಮ್ಮಿಳನ ಕ್ರಿಯೆಗಳಿಂದ ಉಂಟಾಗುತ್ತೆಂದು ಅರಿಯಲು ದಾರಿ ಕಲ್ಪಿಸಿತು.[೭] 1935ರಲ್ಲಿ, ನಕ್ಷತ್ರಗಳೊಳಗೆ,ಇತರೆ ಮೂಲವಸ್ತುಗಳೂ ರಚನೆಯಾಗಬಹುದು ಎಂದು ಎಡ್ಡಿಂಗ್‌ಟನ್ ಸೂಚಿಸಿದರು.[೮] ವಿಕಾಸಗೊಂಡ ನಕ್ಷತ್ರಗಳಾದ ಕೆಂಪು ದೈತ್ಯ ನಕ್ಷತ್ರಗಳು ಜಲಜನಕ ಮತ್ತು ಹೀಲಿಯಂಗಿಂತ ಭಾರವಾದ ಅನೇಕ ಮೂಲವಸ್ತುಗಳನ್ನು ಅವುಗಳ ತಿರುಳುಗಳಲ್ಲಿ ಸೃಷ್ಟಿಸಿವೆ ಎಂದು ವಾದಿಸುವ ಮೂಲಕ ಈ ಪ್ರಮೇಯದ ಬಗ್ಗೆ ಫ್ರೆಡ್ ಹಾಯ್ಲೆ ವಿವರಣೆ ಕೊಟ್ಟರು. ಕೆಂಪು ದೈತ್ಯ ನಕ್ಷತ್ರವು ಅಂತಿಮವಾಗಿ ತನ್ನ ಹೊರ ಪದರಗಳನ್ನು ಕಳಚಿಕೊಂಡಾಗ ಈ ಮೂಲವಸ್ತುಗಳು ಮರುಬಳಕೆಯಾಗಿ ಇತರ ನಕ್ಷತ್ರ ವ್ಯವಸ್ಥೆಗಳನ್ನು ರಚಿಸುತ್ತವೆ.[೮]

ರಚನೆ[ಬದಲಾಯಿಸಿ]

ಪೂರ್ವ-ಸೌರ ನೀಹಾರಿಕೆ[ಬದಲಾಯಿಸಿ]

ದೈತ್ಯ ಆಣ್ವಿಕ ಮೋಡದ ಚೂರಿನ ಗುರುತ್ವ ಕುಸಿತದಿಂದ ಸೌರವ್ಯೂಹವು ರಚನೆಯಾಯಿತು ಎಂದು ನೀಹಾರಿಕೆ ಸಿದ್ಧಾಂತವು ಪ್ರತಿಪಾದಿಸಿದೆ.[೯][೯] ಮೋಡವು ಸ್ವತಃ 20 pc,[೯] ಗಾತ್ರವನ್ನು ಹೊಂದಿದೆ. ಆದರೆ ಚೂರುಗಳು ಸರಿಸುಮಾರು 1 pc (ಮೂರು ಕಾಲು ಜ್ಯೋತಿರ್ವರ್ಷಗಳು) ಆಗಿರುತ್ತದೆ.[೧೦] ಚೂರುಗಳ ಮತ್ತಷ್ಟು ಕುಸಿತದಿಂದ ದಟ್ಟವಾದ 0.01–0.1 pc (2,000–20,000 AU)ಗಾತ್ರದ ಮಧ್ಯಭಾಗಗಳು(ತಿರುಳುಗಳು) ರಚನೆಯಾದವು.[note ೧][೯][೧೧] ಕುಸಿತಗೊಂಡ ಚೂರುಗಳಲ್ಲೊಂದು(ಪೂರ್ವ ಸೌರ ನೀಹಾರಿಕೆ ಎಂದು ಹೆಸರಾಗಿದೆ)ಸೌರವ್ಯೂಹವನ್ನು ರೂಪಿಸಿತು.[೧೨] ಸೂರ್ಯನ ಸ್ವಲ್ಪ ಮೇಲಿರುವ ದ್ರವ್ಯರಾಶಿಯಿಂದ ಕೂಡಿದ ಈ ಪ್ರದೇಶದ ರಚನೆಯು ಇಂದಿನ ಸೂರ್ಯನಲ್ಲಿರುವಷ್ಟು ದ್ರವ್ಯರಾಶಿಯಷ್ಟೇ ಸಮನಾಗಿದೆ. ಮಹಾ ಸ್ಫೋಟ ಪರಮಾಣು ವಿಶ್ಲೇಷಣೆ(ಪರಮಾಣು ಬೀಜಗಳ ರಚನೆ ಪ್ರಕ್ರಿಯೆ)ಯಿಂದ ಉತ್ಪಾದನೆಯಾದ ಜಲಜನಕ, ಹೀಲಿಯಂ ಹಾಗು ಲಿಥಿಯಂನ ಗುರುತಿಸಬಹುದಾದ ಮೊತ್ತಗಳು ಅದರ ದ್ರವ್ಯರಾಶಿಯ 98%ಭಾಗ ರಚನೆಯಾಗಿದೆ. ದ್ರವ್ಯರಾಶಿಯ ಉಳಿದ 2% ಭಾರವಾದ ಮೂಲವಸ್ತುಗಳನ್ನು ಒಳಗೊಂಡಿವೆ. ಇದು ನಕ್ಷತ್ರಗಳ ಮುಂಚಿನ ತಲೆಮಾರುಗಳಲ್ಲಿ ಯಿಂದ ಸೃಷ್ಟಿಯಾಗಿದೆ.[೧೩]

ಈ ನಕ್ಷತ್ರಗಳ ಜೀವಿತಾವಧಿಯ ಕೊನೆಯಲ್ಲಿ, ಅಂತರತಾರಾ ಮಾಧ್ಯಮಕ್ಕೆ ಭಾರವಾದ ಮೂಲವಸ್ತುಗಳನ್ನು ಚಿಮ್ಮಿಸಿದವು.[೧೪]
ಓರಿಯನ್ ನೀಹಾರಿಕೆಯಲ್ಲಿ ಪ್ರೋಟೋಪ್ಲಾನಿಟರಿ ತಟ್ಟೆಯ ಹಬ್ಬಲ್ ದೂರದರ್ಶಕದ ಚಿತ್ರ. ಜ್ಯೋತಿರ್ವರ್ಷಗಳ ಅಗಲದ "ನಕ್ಷತ್ರಗಳು ರಚನೆಯಾಗುವ ಆಣ್ವಿಕ ಮೋಡ"ವು ಬಹುಶಃ ನಮ್ಮ ಸೂರ್ಯ ರಚನೆಯಾದ ಮೂಲಸ್ಥಿತಿಯ ನೀಹಾರಿಕೆಗೆ ಹೋಲಿಕೆಯಾಗುತ್ತದೆ.

ಪ್ರಾಚೀನ ಉಲ್ಕೆಗಳ ಅಧ್ಯಯನದಲ್ಲಿ ಅಲ್ಪಾವಧಿಯ ಐಸೊಟೋಪ್‌ನ ಸ್ಥಿರ ವಿಭಜನೆ ಪರಮಾಣುಬೀಜಗಳ ಕುರುಹುಗಳು ಪತ್ತೆಯಾಗಿವೆ. ಉದಾಹರಣೆಗೆ ಐರನ್-60. ಅವು ಅಲ್ಪಕಾಲೀನ ನಕ್ಷತ್ರಗಳ ಸ್ಫೋಟದಿಂದ ಮಾತ್ರ ಸಂಭವಿಸಿದೆ. ಇದರಿಂದ ಸೂರ್ಯ ರೂಪತಳೆಯುತ್ತಿರುವಾಗ ಸೂರ್ಯನ ಬಳಿ ಒಂದು ಅಥವಾ ಅದಕ್ಕಿಂತ ಹೆಚ್ಚು ಸೂಪರ್‌ನೋವಾ(ನಕ್ಷತ್ರ ಸ್ಫೋಟ) ಘಟಿಸಿವೆ ಎನ್ನುವುದನ್ನು ಸೂಚಿಸುತ್ತದೆ. ಸೂಪರ್‌ನೋವಾದ ಆಘಾತದ ಅಲೆಯು ಸೂರ್ಯನ ರಚನೆಗೆ ಪ್ರಚೋದನೆಯಾಗಿರಬಹುದು. ಮೋಡದೊಳಗೆ ಹೆಚ್ಚಿನ ಸಾಂದ್ರತೆಯ ಪ್ರದೇಶಗಳನ್ನು ಉಂಟುಮಾಡಿ, ಈ ಪ್ರದೇಶಗಳು ಕುಸಿದಿದ್ದರಿಂದ ಸೂರ್ಯನ ರಚನೆಯಾಗಿರಬಹುದು.[೧೫] ಕೇವಲ ಬೃಹತ್,ಅಲ್ಪಾವಧಿ ಜೀವಿತದ ನಕ್ಷತ್ರಗಳು ಸೂಪರ್‌ನೋವಾ ನಿರ್ಮಿಸುವುದರಿಂದ, ಬೃಹತ್ ನಕ್ಷತ್ರಗಳನ್ನು ಉತ್ಪಾದಿಸಿದ ನಕ್ಷತ್ರ ರಚನೆ ಪ್ರದೇಶದಲ್ಲಿ ಸೂರ್ಯ ರಚನೆಯಾಗಿರಬಹುದು. ಇದು ಓರಿಯನ್ ನೆಬ್ಯುಲಾಗೆ ಸದೃಶವಾಗಿದೆ.[೧೬][೧೭] ಕೈಪರ್ ಪಟ್ಟಿ ಮತ್ತು ಅದರಲ್ಲಿರುವ ಅಸಂಗತ ವಸ್ತುಗಳ ಅಧ್ಯಯನದಿಂದ 6 .5ಮತ್ತು 19 .5 ಜ್ಯೋತಿರ್ವರ್ಷಗಳ ವ್ಯಾಸವಿರುವ ಮತ್ತು 3000 ಸೂರ್ಯರಿಗೆ ಸಮನಾಗಿರುವ ಒಟ್ಟು ದ್ರವ್ಯರಾಶಿಯಿಂದ ಕೂಡಿದ ನಕ್ಷತ್ರಗಳ ಗೊಂಚಲಿನಲ್ಲಿ ಸೂರ್ಯ ರಚನೆಯಾಯಿತು ಎನ್ನುವುದನ್ನು ಸೂಚಿಸುತ್ತದೆ.[೧೮] ತನ್ನ ಜೀವಿತಾವಧಿಯ ಮೊದಲ 100 ದಶಲಕ್ಷ ವರ್ಷಗಳಲ್ಲಿ ನಮ್ಮ ಕಿರಿಯ ಸೂರ್ಯನು ಸಮೀಪ ಹಾದುಹೋಗುವ ನಕ್ಷತ್ರಗಳ ಜತೆ ಮೊದಲ 100 ದಶಲಕ್ಷ ವರ್ಷಗಳ ಕಾಲ ಸಂಪರ್ಕಿಸಿದ ಅನೇಕ ಅನುಕರಣೆಗಳಿಂದ ಬೇರ್ಪಟ್ಟ ವಸ್ತುಗಳು ಮುಂತಾದ ಹೊರ ಸೌರವ್ಯೂಹದಲ್ಲಿ ಕಂಡುಬರುವ ಅಸಂಗತ ಕಕ್ಷೆಗಳನ್ನು ಉತ್ಪಾದಿಸಿತು.[೧೯]

ಕೋನಯುತ ಆವೇಗದ ರಕ್ಷಣೆಯಿಂದಾಗಿ, ನೀಹಾರಿಕೆ ವೇಗವಾಗಿ ತಿರುಗಿ ಕುಸಿತಗೊಂಡಿತು. ನೀಹಾರಿಕೆಯಲ್ಲಿರುವ ವಸ್ತು ಬಾಷ್ಪೀಕರಿಸಿದಂತೆ, ಅದರಲ್ಲಿರುವ ಪರಮಾಣುಗಳು ಹೆಚ್ಚಿದ ಆವರ್ತನೆಗಳಲ್ಲಿ ಘರ್ಷಣೆಯಾಗಿ,ಅವುಗಳ ಚಲನಶಕ್ತಿಯನ್ನು ಉಷ್ಣವಾಗಿ ಪರಿವರ್ತಿಸಿತು. ಬಹುಮಟ್ಟಿನ ದ್ರವ್ಯರಾಶಿ ಸಂಗ್ರಹವಾದ ಮಧ್ಯಭಾಗವು ಸುತ್ತಲಿನ ಚಪ್ಪಟೆಯಾಕಾರದ ತಟ್ಟೆಗಿಂತ ಹೆಚ್ಚೆಚ್ಚು ಬಿಸಿಯಾಯಿತು.[೧೦] ಸುಮಾರು 100,000 ವರ್ಷಗಳ ಕಾಲಾವಧಿಯಲ್ಲಿ [೯] ಗುರುತ್ವ,ಅನಿಲ ಒತ್ತಡ, ಕಾಂತೀಯ ಕ್ಷೇತ್ರಗಳು ಮತ್ತು ಪರಿಭ್ರಮಣೆಯ ಶಕ್ತಿಗಳು ಸಂಕುಚಿಸುತ್ತಿದ್ದ ನೀಹಾರಿಕೆಯನ್ನು ತಿರುಗುವ ಪ್ರೋಟೊಪ್ಲಾನೆಟರಿ ಡಿಸ್ಕ್‌ಗೆ(ಅನಿಲ,ಧೂಳಿನ ತಟ್ಟೆ) ಪರಿವರ್ತಿಸಿತು. ~200 AU[೧೦] ವ್ಯಾಸದೊಂದಿಗೆ ಮಧ್ಯಭಾಗದಲ್ಲಿ ಬಿಸಿಯಾದ, ದಟ್ಟವಾದ ಪ್ರೋಟೊಸ್ಟಾರ್‌(ಜಲಜನಕದ ಸಮ್ಮಿಳನ ಇನ್ನೂ ಆರಂಭವಾಗಿರದ ನಕ್ಷತ್ರ) ಸ್ವರೂಪಕ್ಕೆ ತಿರುಗಿತು.[೨೦]

ಈ ವಿಕಾಸದ ಹಂತದಲ್ಲಿ, ಸೂರ್ಯನು T ಟೌರಿ ನಕ್ಷತ್ರವಾಗಿತ್ತೆಂದು ನಂಬಲಾಗಿದೆ.[೨೧] T ಟೌರಿ ನಕ್ಷತ್ರಗಳ ಅಧ್ಯಯನದಿಂದ ಅವು ಸಾಮಾನ್ಯವಾಗಿ ಗ್ರಹಗಳ ರಚನೆಗೆ ಪೂರ್ವ ವಸ್ತುಗಳ ತಟ್ಟೆಗಳಿಂದ ಜತೆಗೂಡಿ 0.001–0.1 ಸೌರದ್ರವ್ಯರಾಶಿಗಳನ್ನು ಹೊಂದಿತ್ತೆಂದು ತೋರಿಸುತ್ತದೆ.[೨೨] ಈ ತಟ್ಟೆಗಳು(ದುಂಡಾದ ಚಪ್ಪಟೆಯ ಭಾಗ)ಅನೇಕ 100AUಗಳವೆರೆಗೆ ವಿಸ್ತರಿಸಿದೆ. ಹಬ್ಬಲ್ ಬಾಹ್ಯಾಕಾಶ ದೂರದರ್ಶಕದಿಂದ 1000AUಗಳವರೆಗೆ ವ್ಯಾಸದ ಪ್ರೋಟೊಪ್ಲಾನೆಟರಿ ತಟ್ಟೆಗಳನ್ನು ನಕ್ಷತ್ರ ರಚನೆ ವಲಯಗಳಾದ ಓರಿಯನ್ ನೆಬ್ಯುಲಾ[೨೩] ಮುಂತಾದ ಕಡೆ ವೀಕ್ಷಿಸಲಾಗಿದೆ. ಇವುಗಳು ತಂಪಾಗಿದ್ದು, ಅವುಗಳ ಅತೀ ತಾಪಮಾನದಲ್ಲಿ ಕೇವಲ ಒಂದು ಸಾವಿರ ಕೆಲ್ವಿನ್‌ಗಳನ್ನು ಮುಟ್ಟುತ್ತದೆ.[೨೪] ಸುಮಾರು 50ದಶಲಕ್ಷ ವರ್ಷಗಳ ಒಳಗೆ, ಸೂರ್ಯನ ಮಧ್ಯಭಾಗ(ತಿರುಳು)ದಲ್ಲಿ ಉಷ್ಣಾಂಶ ಮತ್ತು ಒತ್ತಡ ಅತೀವ ಹೆಚ್ಚಳವಾಗಿ, ಅದರಲ್ಲಿದ್ದ ಜಲಜನಕ ಸಂಯೋಜನೆ ಆರಂಭಿಸಿತು. ಇದರಿಂದ ದ್ರವಸ್ಥಿತಿ ಸಮತೋಲನ ಸಾಧಿಸುವ ತನಕ ಗುರುತ್ವ ಸಂಕೋಚನಕ್ಕೆ ಪ್ರತಿಯಾದ ಆಂತರಿಕ ಶಕ್ತಿ ಮೂಲ ಸೃಷ್ಟಿಯಾಯಿತು.[೨೫] ಇದು ಸೂರ್ಯನು ಮೇನ್ ಸ್ವೀಕ್ವೆನ್ಸ್(ನಕ್ಷತ್ರಗಳ ಪಟ್ಟಿ) ಎಂದು ಹೆಸರಾದ ತನ್ನ ಜೀವಿತಾವಧಿಯ ಪ್ರಥಮ ಹಂತಕ್ಕೆ ಪ್ರವೇಶ ಪಡೆಯುವುದರ ಗುರುತಾಗಿದೆ. ಮೇನ್ ಸ್ವೀಕ್ವೆನ್ಸ್ ನಕ್ಷತ್ರಗಳು ಅವುಗಳ ತಿರುಳಿನಲ್ಲಿ ಜಲಜನಕ ಹೀಲಿಯಂಗೆ ಸಮ್ಮಿಳನವಾಗುವುದರಿಂದ ಶಕ್ತಿಯನ್ನು ಪಡೆಯುತ್ತದೆ. ಸೂರ್ಯನು ಇಂದು ಮೇನ್ ಸೀಕ್ವೆನ್ಸ್(ಮುಖ್ಯ ಅನುಕ್ರಮದ ನಕ್ಷತ್ರಗಳ ಪಟ್ಟಿ) ನಕ್ಷತ್ರವಾಗಿದ್ದಾನೆ.[೨೬]

ಗ್ರಹಗಳ ರಚನೆ[ಬದಲಾಯಿಸಿ]

ಸೌರ ನೀಹಾರಿಕೆ ಕುರಿತ ಕಲಾವಿದನ ಕಲ್ಪನೆ

ಅನೇಕ ಗ್ರಹಗಳು ಸೌರ ನೆಬ್ಯುಲಾ ದಿಂದ ರಚನೆಯಾಗಿರಬಹುದೆಂದು ಭಾವಿಸಲಾಗಿದೆ. ಇದು ಸೂರ್ಯನ ರಚನೆಯ ನಂತರ ಉಳಿದ ಅನಿಲ ಮತ್ತು ಧೂಳಿನ ಚಪ್ಪಟೆ ತಟ್ಟೆಯಾಕಾರದ ಮೋಡವಾಗಿದೆ.[೨೭] ಗ್ರಹಗಳು ರಚನೆಯಾದ ಸ್ವೀಕಾರಾರ್ಹ ವಿಧಾನವು ನಿರಂತರ ವಿಕಾಸ ಎಂದು ಹೆಸರಾಗಿದೆ. ಇದರಲ್ಲಿ ಗ್ರಹಗಳು ಕೇಂದ್ರ ಪ್ರೋಟೊಸ್ಟಾರ್ ಸುತ್ತ ಕಕ್ಷೆಯಲ್ಲಿ ಧೂಳಿನ ಕಣಗಳಾಗಿ ಆರಂಭವಾದವು. ನೇರ ಸಂಪರ್ಕದ ಮೂಲದ ಈ ಘನಕಣಗಳು 200 ಮೀಟರ್ ವ್ಯಾಸದ ರಾಶಿಯಾಗಿ ರಚನೆಯಾಯಿತು. ಇವು ಪುನಃ ಡಿಕ್ಕಿಯಾಗಿ ಗಾತ್ರದಲ್ಲಿ ~10 ಕಿಲೋಮೀಟರ್ (km) ದೊಡ್ಡ ಕಾಯಗಳಾಗಿ(ಪುಟ್ಟ ಗ್ರಹಗಳು)ರೂಪುಗೊಂಡವು.[೨೮] ಮತ್ತಷ್ಟು ಡಿಕ್ಕಿಗಳ ಮೂಲಕ ಇವುಗಳ ಗಾತ್ರ ಕ್ರಮೇಣ ಹೆಚ್ಚಳವಾಗಿ, ಮುಂದಿನ ಕೆಲವು ದಶಲಕ್ಷ ವರ್ಷಗಳ ಕಾಲಾವಧಿಯಲ್ಲಿ ಪ್ರತಿ ವರ್ಷ ಸೆಂಟಿಮೀಟರುಗಳಷ್ಟು ಬೆಳವಣಿಗೆ ಸಾಧಿಸಿದವು.[೨೮]

4 AUಒಳಗಿನ ಸೌರವ್ಯೂಹ ಪ್ರದೇಶವಾದಒಳ ಸೌರವ್ಯೂಹ ತಟ್ಟನೆ ಮಾರ್ಪಡುವ ಅಣುಗಳಾದ ನೀರು ಮತ್ತು ಮೀಥೇನ್ ಘನೀಕರಿಸಲು ತೀರಾ ಬಿಸಿಯಾಗಿರುತ್ತದೆ. ಹೀಗಾಗಿ ಅಲ್ಲಿ ರಚನೆಯಾಗುವ ಸಣ್ಣಗ್ರಹಗಳು ಹೆಚ್ಚು ಕರಗುವ ಬಿಂದುಗಳ ಸಂಯುಕ್ತಗಳಾದ ಲೋಹಗಳಿಂದ ಮಾತ್ರ ರೂಪುಗೊಳ್ಳಲು ಸಾಧ್ಯ. ಉದಾಹರಣೆಗೆ ಕಬ್ಬಿಣ, ನಿಕಲ್, ಅಲ್ಯುಮಿನಿಯಂ ಮತ್ತು ಕಲ್ಲಿನ ಸಿಲಿಕೇಟ್

ಈ ಘನವಸ್ತು ಕಾಯಗಳು ಘನರೂಪಿ ಗ್ರಹಗಳಾಗಿ ಬುಧ, ಶುಕ್ರ, ಭೂಮಿ ಮತ್ತು ಮಂಗಳ ಗ್ರಹಗಳೆಂದು ಹೆಸರಾಯಿತು. ಈ ಸಂಯುಕ್ತಗಳು ಬ್ರಹ್ಮಾಂಡದಲ್ಲಿ ಬಹಳ ಅಪರೂಪವಾಗಿದ್ದು, ನೆಬ್ಯುಲಾದ ದ್ರವ್ಯರಾಶಿಯ 0.6%ಮಾತ್ರ ಒಳಗೊಂಡಿದೆ. ಆದ್ದರಿಂದ ಘನರೂಪಿ ಗ್ರಹಗಳು ದೊಡ್ಡ ಗಾತ್ರದಲ್ಲಿ ಬೆಳೆಯಲು ಸಾಧ್ಯವಾಗಿಲ್ಲ.[೧೦] ಘನರೂಪಿ(ಭೂಸದೃಶ) ಗ್ರಹಗಳ ಮೂಲರೂಪಗಳು 0.05 ಭೂ ದ್ರವ್ಯರಾಶಿಗಳಾಗಿ ಬೆಳೆದು ಸೂರ್ಯನು ರಚನೆಯಾದ ಸುಮಾರು 100,000ವರ್ಷಗಳ ನಂತರ ಮೂಲವಸ್ತುಗಳ ಸಂಗ್ರಹವನ್ನು ನಿಲ್ಲಿಸಿದವು. ತರುವಾಯ ಗ್ರಹ ಗಾತ್ರದ ಕಾಯಗಳ ನಡುವೆ ತರುವಾಯದ ಡಿಕ್ಕಿಗಳು ಮತ್ತು ವಿಲೀನಗಳು ಘನರೂಪಿ ಗ್ರಹಗಳು ಪ್ರಸಕ್ತ ಗಾತ್ರಗಳಿಗೆ ಬೆಳೆಯಲು ಅವಕಾಶವೊದಗಿಸಿತು.(ಕೆಳಗೆ ಘನರೂಪಿ ಗ್ರಹಗಳು ನೋಡಿ).[೨೯]

ಘನರೂಪಿ(ಭೂಸದೃಶ) ಗ್ರಹಗಳು ರೂಪುಗೊಳ್ಳುವ ಸಂದರ್ಭದಲ್ಲಿ ಅವು ಅನಿಲ ಮತ್ತು ಧೂಳಿನ ತಟ್ಟೆಯಲ್ಲಿ ಮುಳುಗಿದ್ದವು. ಅನಿಲವು ಆಂಶಿಕವಾಗಿ ಒತ್ತಡದಿಂದ ಬೆಂಬಲಿತವಾಗಿತ್ತು ಹಾಗು ಗ್ರಹಗಳಷ್ಟು ವೇಗವಾಗಿ ಸೂರ್ಯನ ಸುತ್ತ ಪರಿಭ್ರಮಿಸಲಿಲ್ಲ. ಇದರಿಂದುಂಟಾದ ಎಳೆತವು ಕೋನೀಯ ಆವೇಗದ ವರ್ಗಾವಣೆಯನ್ನು ಉಂಟುಮಾಡಿತು. ಇದರ ಫಲವಾಗಿ ಗ್ರಹಗಳು ಕ್ರಮೇಣ ಹೊಸ ಕಕ್ಷೆಗಳಿಗೆ ವಲಸೆ ಹೋದವು. ಡಿಸ್ಕ್(ತಟ್ಟೆ)ನಲ್ಲಿ ತಾಪಮಾನದ ವ್ಯತ್ಯಾಸಗಳಿಂದ ಈ ರೀತಿಯ ವಲಸೆಯ ಪ್ರಮಾಣಕ್ಕೆ ಎಡೆಮಾಡಿತು. ಆದರೆ ಡಿಸ್ಕ್ ಚದುರಿದಂತೆ, ನಿವ್ವಳ ಪ್ರವತ್ತಿಯು ಒಳಗ್ರಹಗಳು ಮತ್ತಷ್ಟು ಒಳಮುಖವಾಗಿ ವಲಸೆ ಹೋಗಿ ಗ್ರಹಗಳನ್ನು ಪ್ರಸಕ್ತ ಕಕ್ಷೆಗಳಲ್ಲಿ ಇರಿಸಿತು ಎನ್ನುವುದನ್ನು ಮಾದರಿಗಳು ತೋರಿಸುತ್ತವೆ.[೩೦]

ಅನಿಲ ದೈತ್ಯ ಗ್ರಹಗಳಾದ ಗುರು,ಶನಿ, ಯುರೇನಸ್ ಮತ್ತು ನೆಪ್ಚೂನ್ ಹಿಮ ರೇಖೆಗಿಂತ ಆಚೆ ರಚನೆಯಾಗಿದೆ. ಇದು ಮಂಗಳ ಮತ್ತು ಗುರುಗ್ರಹಗಳ ಕಕ್ಷೆಯ ನಡುವಿನ ಬಿಂದುವಾಗಿದೆ. ಇದರಲ್ಲಿ ವಸ್ತು ತಂಪಾಗಿದ್ದು, ತಕ್ಷಣವೇ ಮಾರ್ಪಡುವ ಹಿಮದ ಸಂಯುಕ್ತಗಳು ಘನಪದಾರ್ಥವಾಗಿ ಉಳಿಯುತ್ತದೆ. ಗುರುಗ್ರಹಕ್ಕೆ ಹೋಲುವ ಗ್ರಹಗಳಲ್ಲಿ(ಅನಿಲರೂಪಿ ಗ್ರಹಗಳು) ಶೇಖರವಾದ ಹಿಮಗಳು ಭೂಪ್ರದೇಶದ ಗ್ರಹಗಳಲ್ಲಿ ರಚನೆಯಾದ ಲೋಹಗಳು ಮತ್ತು ಸಿಲಿಕೇಟ್‌ಗಳಿಗಿಂತ ಹೆಚ್ಚು ವಿಪುಲವಾಗಿದ್ದವು. ಇದು ಗುರುಗ್ರಹ ಸದೃಶ(ಜೋವಿಯನ್) ಗ್ರಹಗಳು ಹಗುರವಾದ ಮತ್ತು ವಿಪುಲ ಮೂಲವಸ್ತುಗಳಾದ ಜಲಜನಕ ಮತ್ತು ಹೀಲಿಯಂನ್ನು ಸೆರೆಹಿಡಿಯುವಷ್ಟು ಬೃಹತ್ತಾಗಿ ಬೆಳೆಯಿತು.[೧೦] ಸುಮಾರು 3 ದಶಲಕ್ಷ ವರ್ಷಗಳ ಕಾಲಾವಧಿಯಲ್ಲಿ ಸಣ್ಣಗ್ರಹಗಳು ಹಿಮರೇಖೆಗಿಂತ ಆಚೆ ನಾಲ್ಕು ಭೂದ್ರವ್ಯರಾಶಿಗಳಾಗಿ ಸಂಗ್ರಹವಾದವು.[೨೯] ಇಂದು, ನಾಲ್ಕು ಅನಿಲ ದೈತ್ಯ ಗ್ರಹಗಳು ಸೂರ್ಯನ ಸುತ್ತ ಪರಿಭ್ರಮಿಸುವ 99% ದ್ರವ್ಯರಾಶಿಗಿಂತ ಸ್ವಲ್ಪ ಕಡಿಮೆ ಒಳಗೊಂಡಿವೆ.[note ೨] ಗುರುಗ್ರಹವು ಹಿಮರೇಖೆಗೆ ಸ್ವಲ್ಪ ಆಚೆ ರೂಪುಗೊಂಡಿರುವುದು ಆಕಸ್ಮಿಕವಲ್ಲ ಎಂದು ತಾತ್ತ್ವಿಕ ಸಿದ್ಧಾಂತಿಗಳು ನಂಬಿದ್ದಾರೆ. ಏಕೆಂದರೆ,ಹಿಮ ರೇಖೆಯು ಗುರುತ್ವಾಕರ್ಷಣೆಯಿಂದ ಸೆಳೆಯುವ ಹಿಮದ ವಸ್ತುವನ್ನು ಆವಿಯಾಗುವಿಕೆ ಮೂಲಕ ಅಪಾರ ಪ್ರಮಾಣದ ನೀರನ್ನು ಸಂಗ್ರಹಿಸಿದೆ. ಇದು ಕಡಿಮೆ ಒತ್ತಡದ ಪ್ರದೇಶವನ್ನು ಸೃಷ್ಟಿಮಾಡಿ, ಸುತ್ತುವ ಧೂಳಿನ ಕಣಗಳ ವೇಗವನ್ನು ಹೆಚ್ಚಿಸಿ, ಸೂರ್ಯನತ್ತ ಅವುಗಳ ಚಲನೆಯನ್ನು ನಿಲ್ಲಿಸಿತು. ಇದರ ಪರಿಣಾಮವಾಗಿ ಹಿಮ ರೇಖೆಯು ತಡೆಗೋಡೆಯಾಗಿ ಸೂರ್ಯನಿಂದ ~5 AUದೂರದಲ್ಲಿ ಶೀಘ್ರದಲ್ಲೇ ವಸ್ತು ಸಂಗ್ರಹವಾಗಲು ಕಾರಣವಾಗುತ್ತದೆ. ಹೆಚ್ಚುವರಿ ವಸ್ತು 10 ಭೂ ದ್ರವ್ಯರಾಶಿಗಳ ದೊಡ್ಡ ಮೂಲರೂಪವಾಗಿ ಒಟ್ಟಿಗೆ ಸೇರುತ್ತದೆ. ಅದು ನಂತರ ಸುತ್ತಲಿರುವ ತಟ್ಟೆಯಿಂದ ಜಲಜನಕವನ್ನು ನುಂಗುವ ಮೂಲಕ ಶೀಘ್ರಗತಿಯಲ್ಲಿ ಬೆಳೆಯಲಾರಂಭಿಸುತ್ತದೆ ಹಾಗು ಮುಂದಿನ 1000 ವರ್ಷಗಳಲ್ಲಿ 150 ಭೂದ್ರವ್ಯರಾಶಿಗಳನ್ನು ಮುಟ್ಟುತ್ತದೆ ಮತ್ತು ಅಂತಿಮವಾಗಿ 318 ಭೂದ್ರವ್ಯರಾಶಿಗಳನ್ನು ಮೀರುತ್ತದೆ. ಶನಿಗ್ರಹವು ಗುರುಗ್ರಹದ ನಂತರ ಕೆಲವು ದಶಲಕ್ಷ ವರ್ಷಗಳಲ್ಲಿ ರಚನೆಯಾದ್ದರಿಂದ ಉಪಭೋಗಕ್ಕೆ ಅನಿಲ ಲಭ್ಯತೆ ಕಡಿಮೆಯಾಗಿ ಗಣನೀಯ ಕಡಿಮೆ ದ್ರವ್ಯರಾಶಿ ಹೊಂದಲು ಕಾರಣವಾಗಿದೆ.[೨೯]

ಕಿರಿಯ ಸೂರ್ಯನಂತಹ T ಟೌರಿ ನಕ್ಷತ್ರಗಳು ಹೆಚ್ಚು ಸ್ಥಿರ ಹಳೆಯ ನಕ್ಷತ್ರಗಳಿಗಿಂತ ಇನ್ನಷ್ಟು ಬಲವಾದ ನಕ್ಷತ್ರಮಾರುತಗಳನ್ನು ಹೊಂದಿರುತ್ತವೆ.

ಗುರು ಮತ್ತು ಶನಿಗ್ರಹಗಳ ರಚನೆ ನಂತರ ಯುರೇನಸ್ ಮತ್ತು ನೆಪ್ಚೂನ್ ಗ್ರಹಗಳು ರಚನೆಯಾಗಿದೆ ಎದು ನಂಬಲಾಗಿದೆ. ಬಲವಾದ ಸೌರಮಾರುತವು ಬಹುಮಟ್ಟಿನ ತಟ್ಟೆಯ(ದುಂಡಾಗಿರುವ ಚಪ್ಪಟೆಯ ಭಾಗ) ವಸ್ತುವನ್ನು ಹಾರಿಸಿದ್ದರಿಂದ ಅವು ರಚನೆಯಾದವು. ಇದರ ಫಲವಾಗಿ ಗ್ರಹಗಳು ಪ್ರತಿಯೊಂದೂ ಒಂದು ಭೂದ್ರವ್ಯರಾಶಿಗಿಂತ ಕಡಿಮೆಯಾದ ಸ್ವಲ್ಪಪ್ರಮಾಣದ ಜಲಜನಕ ಮತ್ತು ಹೀಲಿಯಂ ಸಂಗ್ರಹಿಸುತ್ತವೆ. ಯುರೇನಸ್ ಮತ್ತು ನೆಪ್ಚೂನ್‌ನನ್ನು ಕೆಲವೊಂದು ಬಾರಿ ವಿಫಲಗೊಂಡ ತಿರುಳುಗಳು ಎಂದು ಉಲ್ಲೇಖಿಸಲಾಗುತ್ತದೆ.[೩೧] ಈ ಗ್ರಹಗಳ ರಚನೆ ಸಿದ್ಧಾಂತಗಳಲ್ಲಿ ಮುಖ್ಯ ಸಮಸ್ಯೆಯೇನೆಂದರೆ ಅವುಗಳ ರಚನೆಯ ಕಾಲಪ್ರಮಾಣ. ಪ್ರಸಕ್ತ ಸ್ಥಳಗಳಲ್ಲಿ ಅವುಗಳು ಮಧ್ಯಭಾಗ(ತಿರುಳು)ದಲ್ಲಿ ಒಂದುಗೂಡಲು ನೂರು ದಶಲಕ್ಷ ವರ್ಷಗಳನ್ನು ತೆಗೆದುಕೊಂಡಿರಬಹುದು. ಇದರ ಅರ್ಥವೇನೆಂದರೆ ಯುರೇನಸ್ ಮತ್ತು ನೆಪ್ಚೂನ್ ಸೂರ್ಯನಿಗೆ ಸಮೀಪದಲ್ಲಿ -ಗುರು ಮತ್ತು ಶನಿಯ ಸಮೀಪ ಅಥವಾ ಮಧ್ಯದಲ್ಲಿ ಬಹುಶಃ ರಚನೆಯಾಗಿರಬಹುದು- ನಂತರ ಹೊರಭಾಗಕ್ಕೆ ವಲಸೆ ಹೋಗಿರಬಹುದು(ನೋಡಿ ಕೆಳಗೆ ಕೊಟ್ಟಿರುವ ಗ್ರಹಗಳ ವಲಸೆ)[೩೧][೩೨]. ಪುಟ್ಟಗ್ರಹಗಳ ಯುಗದಲ್ಲಿ ಚಲನೆಯೆಲ್ಲವೂ ಸೂರ್ಯನತ್ತ ಒಳಮುಖವಾಗಿರಲಿಲ್ಲ. ಸ್ಟಾರ್‌ಡಸ್ಟ್‌ ಬಾಹ್ಯಾಕಾಶ ನೌಕೆಯಿಂದ ವೈಲ್ಡ್ 2 ಧೂಮಕೇತುವಿನಿಂದ ಪಡೆದ ಮಾದರಿಯ ಪರೀಕ್ಷೆಯಿಂದ ಸೌರವ್ಯೂಹದ ಮುಂಚಿನ ರಚನೆಯಲ್ಲಿದ್ದ ವಸ್ತುಗಳು ಬಿಸಿಯಾದ ಒಳಸೌರವ್ಯೂಹದಿಂದ ಕೈಪರ್ ಪಟ್ಟಿ ಪ್ರದೇಶಕ್ಕೆ ವಲಸೆ ಹೋದವು ಎನ್ನುವುದನ್ನು ಸೂಚಿಸುತ್ತದೆ.[೩೩]

ಮೂರು ಮತ್ತು 10 ದಶಲಕ್ಷ ವರ್ಷಗಳ ನಡುವೆ,[೨೯] ಕಿರಿಯ ಸೂರ್ಯನ ಸೌರ ಮಾರುತ ಪ್ರೋಟೊಪ್ಲಾನಟರಿ ತಟ್ಟೆಯಲ್ಲಿದ್ದ ಎಲ್ಲ ಅನಿಲ ಮತ್ತು ಧೂಳನ್ನು ಅಂತರತಾರಾ ಬಾಹ್ಯಾಕಾಶಕ್ಕೆ ಚಿಮ್ಮುವಂತೆ ಮಾಡಿ, ಗ್ರಹಗಳ ಬೆಳವಣಿಗೆ ಅಂತ್ಯಗೊಳಿಸಿರಬಹುದು.[೩೪][೩೫]

ತರುವಾಯದ ವಿಕಾಸ[ಬದಲಾಯಿಸಿ]

ಚಂದ್ರನನ್ನು ರೂಪಿಸಿದೆಯೆಂದು ನಂಬಲಾದ ದೈತ್ಯ ಅಪ್ಪಳಿಕೆ.

ಗ್ರಹಗಳು ಮೂಲತಃ ಅವುಗಳ ಪ್ರಸಕ್ತ ಕಕ್ಷೆಗಳಲ್ಲಿ ಅಥವಾ ಹತ್ತಿರ ರಚನೆಯಾಗಿರಬಹುದು ಎಂದು ನಂಬಲಾಗಿದೆ. ಆದಾಗ್ಯೂ, ಈ ಅಭಿಪ್ರಾಯವು 20 ಮತ್ತು ಪೂರ್ವದ 21ನೇ ಶತಮಾನಗಳಲ್ಲಿ ಮೂಲಭೂತ ಬದಲಾವಣೆಗೆ ಒಳಗಾಗಿದೆ. ಪ್ರಸಕ್ತ, ಸೌರವ್ಯೂಹವು ತನ್ನ ಆರಂಭಿಕ ರಚನೆ ನಂತರ ಅತ್ಯಂತ ಭಿನ್ನವಾಗಿ ಕಾಣುತ್ತಿದೆ. ಒಳ ಸೌರವ್ಯೂಹದಲ್ಲಿ ಬುಧಗ್ರಹದಷ್ಟು ಬೃಹತ್ತಾದ ಅನೇಕ ವಸ್ತುಗಳು ಉಪಸ್ಥಿತವಿದ್ದವು. ಹೊರ ಸೌರವ್ಯೂಹವು ಈಗಿನದಕ್ಕಿಂತ ಹೆಚ್ಚು ಒತ್ತಾಗಿತ್ತು ಹಾಗು ಕೈಪರ್ ಪಟ್ಟಿಯು ಸೂರ್ಯನಿಗೆ ಅತೀ ಸಮೀಪದಲ್ಲಿತ್ತು.[೩೬]

ಭೂಸದೃಶ(ಘನರೂಪಿ) ಗ್ರಹಗಳು[ಬದಲಾಯಿಸಿ]

ಗ್ರಹಗಳ ರಚನೆಯ ಯುಗದ ಅಂತ್ಯದಲ್ಲಿ, ಒಳ ಸೌರವ್ಯೂಹವು 50 -100ಚಂದ್ರರಿಂದ ಹಾಗು ಮಂಗಳನ ಗಾತ್ರದ ಗ್ರಹದ ಮೂಲರೂಪಗಳಿಂದ ತುಂಬಿತ್ತು.[೩೭][೩೮] ಈ ಕಾಯಗಳು ಪರಸ್ಪರ ಅಪ್ಪಳಿಸಿ, ವಿಲೀನಗೊಂಡಿದ್ದರಿಂದ ಇನ್ನಷ್ಟು ಬೆಳವಣಿಗೆ ಸಾಧ್ಯವಾಯಿತು. ಇದು 100 ದಶಲಕ್ಷ ವರ್ಷಗಳಿಗಿಂತ ಕಡಿಮೆ ತೆಗೆದುಕೊಂಡಿತು. ಈ ವಸ್ತುಗಳು ಗುರುತ್ವಬಲದಿಂದ ಪರಸ್ಪರ ಸಂಪರ್ಕ ಹೊಂದಿ, ಅವು ಪರಸ್ಪರ ಕಕ್ಷೆಗಳನ್ನು ಎಳೆದು ಡಿಕ್ಕಿಹೊಡೆಯಿತು. ನಾಲ್ಕು ಭೂಸದೃಶ(ಘನರೂಪಿ)ಗ್ರಹಗಳು ರೂಪ ತಳೆಯುವವರೆಗೆ ದೊಡ್ಡದಾಗಿ ಬೆಳೆಯಿತು.[೨೯] ಇಂತಹ ಒಂದು ಬೃಹತ್ ಡಿಕ್ಕಿಯಿಂದ ಚಂದ್ರನನ್ನು ನಿರ್ಮಾಣ ಮಾಡಿರಬಹುದು ಎಂದು ನಂಬಲಾಗಿದೆ.(ಕೆಳಗೆ ನೋಡಿ ಮೂನ್ಸ್).ಇನ್ನೊಂದು ಡಿಕ್ಕಿಯು ಕಿರಿಯ ಬುಧಗ್ರಹದ ಹೊರಭಾಗದ ಕವಚವನ್ನು ತೆಗೆದಿರಬಹುದು.[೩೯]

ಈ ಮಾದರಿಯ ಬಗ್ಗೆ ಇತ್ಯರ್ಥವಾಗದ ಒಂದು ವಿಷಯವೆಂದರೆ, ಡಿಕ್ಕಿಯಾಗಲು ಅತ್ಯಂತ ವಿಕೇಂದ್ರಿಯತೆ ಅಗತ್ಯವಿದ್ದ ಪೂರ್ವ-ಘನರೂಪಿ ಗ್ರಹಗಳ ಆರಂಭಿಕ ಕಕ್ಷೆಗಳು, ಬಹುಮಟ್ಟಿಗೆ ಭೂಸದೃಶ(ಘನರೂಪಿ) ಗ್ರಹಗಳು ಇಂದು ಹೊಂದಿರುವ ವೃತ್ತಾಕಾರದ ಮತ್ತು ಸ್ಥಿರವಾದ ಕಕ್ಷೆಗಳನ್ನು ಹೇಗೆ ಉತ್ಪಾದಿಸಿತು ಎನ್ನುವುದಕ್ಕೆ ಅದು ವಿವರಣೆ ನೀಡುವುದಿಲ್ಲ.[೩೭] ವೀಕೇಂದ್ರಿಯತೆ ತ್ಯಜಿಸುವ ಕುರಿತು ಒಂದು ಸಿದ್ಧಾಂತವೆಂದರೆ ಅನಿಲದ ತಟ್ಟೆಯಲ್ಲಿ ರಚನೆಯಾದ ಘನರೂಪಿ ಗ್ರಹಗಳು ಸೂರ್ಯನಿಂದ ಇನ್ನೂ ಉಚ್ಚಾಟಿತವಾಗಿರುವುದಿಲ್ಲ. ಉಳಿಕೆ ಅನಿಲದ ಗುರುತ್ವ ಎಳೆತವು ಗ್ರಹಗಳ ಶಕ್ತಿಯನ್ನು ತರುವಾಯ ಕುಂದಿಸಿರಬಹುದು ಹಾಗು ಕಕ್ಷೆಗಳನ್ನು ನುಣುಪುಗೊಳಿಸಿರಬಹುದು.[೩೮] ಆದಾಗ್ಯೂ, ಇಂತಹ ಅನಿಲವು ಅಸ್ತಿತ್ವದಲ್ಲಿದ್ದರೆ, ಮೊದಲಿಗೆ ಘನರೂಪಿ ಗ್ರಹಗಳ ಕಕ್ಷೆಗಳು ಅತ್ಯಂತ ವಿಕೇಂದ್ರಿಯವಾಗುವುದನ್ನು ತಪ್ಪಿಸುತ್ತಿತ್ತು.[೨೯] ಇನ್ನೊಂದು ಸಿದ್ಧಾಂತವು ಗುರುತ್ವ ಎಳೆತವು ಗ್ರಹಗಳು ಮತ್ತು ಉಳಿಕೆ ಅನಿಲದ ನಡುವೆ ಸಂಭವಿಸುವುದಿಲ್ಲ. ಆದರೆ ಗ್ರಹಗಳು ಮತ್ತು ಉಳಿದ ಸಣ್ಣ ಕಾಯಗಳ ನಡುವೆ ಸಂಭವಿಸುತ್ತದೆ ಎನ್ನುವುದಾಗಿದೆ. ದೊಡ್ಡ ಕಾಯಗಳು ಸಣ್ಣ ವಸ್ತುಗಳ ಗುಂಪಿನ ಮೂಲಕ ಹಾದುಹೋಗುವಾಗ, ದೊಡ್ಡ ಗ್ರಹಗಳ ಗುರುತ್ವದಿಂದ ಆಕರ್ಷಿತವಾಗುವ ಸಣ್ಣ ವಸ್ತುಗಳು ದೊಡ್ಡ ವಸ್ತುಗಳ ಪಥದಲ್ಲಿ ಅತೀ ಸಾಂದ್ರತೆಯ ಗುರುತ್ವ ಜಾಗೃತ ಸ್ಥಿತಿ ಪ್ರದೇಶವನ್ನು ರಚಿಸುತ್ತದೆ. ಹಾಗೆ ಮಾಡುವಾಗ, ಜಾಗೃತ ಸ್ಥಿತಿಯ ಹೆಚ್ಚಿದ ಗುರುತ್ವಬಲವು ದೊಡ್ಡ ವಸ್ತುಗಳ ವೇಗವನ್ನು ತಗ್ಗಿಸಿ ಹೆಚ್ಚು ಕಾಯಂ ಕಕ್ಷೆಗಳಿಗೆ ದೂಡುತ್ತವೆ.[೪೦]

ಕ್ಷುದ್ರಗ್ರಹ ಪಟ್ಟಿ[ಬದಲಾಯಿಸಿ]

ಘನರೂಪಿ ಗ್ರಹಗಳ ಹೊರತುದಿಯಲ್ಲಿ, ಸೂರ್ಯನಿಂದ 2 ಮತ್ತು 4 AU ದೂರದಲ್ಲಿರುವ ಪ್ರದೇಶವನ್ನು ಕ್ಷುದ್ರಗ್ರಹ ಪಟ್ಟಿ ಎಂದು ಕರೆಯುತ್ತಾರೆ. ಕ್ಷುದ್ರಗ್ರಹ ಪಟ್ಟಿಯು 2 -3ಘನರಬಪಿ ಗ್ರಹಗಳನ್ನು ರಚಿಸಲು ಸಾಕಾಗುವಷ್ಟು ವಸ್ತುಗಳನ್ನು ಹೊಂದಿದೆ ಹಾಗು ಅಲ್ಲಿ ಅನೇಕ ಸಂಖ್ಯೆಯ ಪುಟ್ಟಗ್ರಹಗಳು ರಚನೆಯಾದವು. ಘನರೂಪಿ ಗ್ರಹಗಳಿಗೆ ಸಂಬಂಧಿಸಿದಂತೆ, ಈ ಪ್ರದೇಶದ ಪುಟ್ಟ ಗ್ರಹಗಳು ನಂತರ ಕೂಡಿಕೊಂಡು 20-30ಚಂದ್ರರಿಂದ ಮಂಗಳನ ಗಾತ್ರದ ಗ್ರಹದ ಮೂಲರೂಪಗಳನ್ನು ರಚಿಸಿದವು.[೪೧] ಆದಾಗ್ಯೂ, ಗುರುವಿನ ಸಾಮೀಪ್ಯದ ಅರ್ಥವೇನೆಂದರೆ, ಈ ಗ್ರಹವು ಸೂರ್ಯನು ರೂಪುಗೊಂಡು 3 ದಶಲಕ್ಷ ವರ್ಷಗಳಲ್ಲಿ ರಚನೆಯಾದ ನಂತರ, ಪ್ರದೇಶದ ಇತಿಹಾಸವು ಗಮನಾರ್ಹವಾಗಿ ಬದಲಾಯಿತು.[೩೭] ಕ್ಷುದ್ರಗ್ರಹ ಪಟ್ಟಿಯಲ್ಲಿ ಗುರು ಮತ್ತು ಶನಿಯೊಂದಿಗೆ ಕಕ್ಷೆಯ ಅನುರಣನವು ವಿಶೇಷವಾಗಿ ಬಲವಾಗಿರುತ್ತದೆ. ಹೆಚ್ಚು ಬೃಹತ್ ಮೂಲರೂಪಗಳೊಂದಿಗೆ ಗುರುತ್ವ ಸಂಪರ್ಕಗಳಿಂದ ಆ ಅನುರಣನಗಳಿಗೆ ಅನೇಕ ಪುಟ್ಟಗ್ರಹಗಳನ್ನು ಹರಡುವಂತೆ ಮಾಡುತ್ತದೆ. ಗುರುಗ್ರಹದ ಗುರುತ್ವವು ಈ ಅನುರಣನಗಳ ಒಳಗೆ ವಸ್ತುಗಳ ವೇಗವನ್ನು ಹೆಚ್ಚಿಸುತ್ತದೆ ಹಾಗು ಇತರೆ ಕಾಯಗಳ ಜತೆ ಡಿಕ್ಕಿಯಿಂದ ಒಂದಾಗುವುದರ ಬದಲು ಚೂರಾಗುವಂತೆ ಮಾಡುತ್ತದೆ.[೪೨]

ಗುರುಗ್ರಹವು ರಚನೆಯಾದ ನಂತರ ಒಳಪ್ರದೇಶಕ್ಕೆ ಗುರು ವಲಸೆ ಹೋಗಿ,(ಕೆಳಗಿನ ಗ್ರಹಗಳ ವಲಸೆ ನೋಡಿ)ಅನುರಣನಗಳು ಕ್ಷುದ್ರಗ್ರಹ ಪಟ್ಟಿಯಲ್ಲಿ ಹರಡಿಕೊಂಡು, ಕ್ರಿಯಾತ್ಮಕವಾಗಿ ವಲಯದ ಸಂಖ್ಯೆಯನ್ನು ಉದ್ದೀಪನಗೊಳಿಸಿರಬಹುದು ಹಾಗು ಅವುಗಳ ವೇಗವನ್ನು ಹೆಚ್ಚಿಸಿರಬಹುದು.[೪೩] ಅನುರಣನಗಳು ಮತ್ತು ಗ್ರಹಗಳ ಮೂಲರೂಪಗಳ ಒಟ್ಟುಗೂಡುವ ಕ್ರಮವು ಕ್ಷುದ್ರಗ್ರಹದ ಪಟ್ಟಿಯಿಂದ ಪುಟ್ಟಗ್ರಹಗಳನ್ನು ದೂರಕ್ಕೆ ತಳ್ಳಿರಬಹುದು ಅಥವಾ ಅವುಗಳ ಕಕ್ಷೆಯ ಓಲುವಿಕೆ ಮತ್ತು ವಿಕೇಂದ್ರಿಯಗಳನ್ನು ಉದ್ದೀಪಿಸಿರಬಹುದು.[೪೧][೪೪] ಇಂತಹ ಕೆಲವು ಗ್ರಹಗಳ ಬೃಹತ್ ಮೂಲರೂಪಗಳನ್ನು ಗುರುಗ್ರಹವು ಕೂಡ ಚಿಮ್ಮಿಸಿರಬಹುದು. ಉಳಿದವು ಒಳ ಸೌರವ್ಯೂಹಕ್ಕೆ ವಲಸೆ ಹೋಗಿ ಘನರೂಪಿ ಗ್ರಹಗಳ ಅಂತಿಮ ಕೂಡಿಕೊಳ್ಳುವಿಕೆಯಲ್ಲಿ ಪಾತ್ರವಹಿಸಿರಬಹುದು.[೪೧][೪೫][೪೬] ಈ ಪ್ರಮುಖ ಬರಿದಾಗುವಿಕೆ ಅವಧಿಯಲ್ಲಿ, ದೈತ್ಯ ಗ್ರಹಗಳು ಮತ್ತು ಗ್ರಹಗಳ ಮೂಲರೂಪಗಳ ಪರಿಣಾಮಗಳಿಂದ ಕ್ಷುದ್ರಗ್ರಹ ಪಟ್ಟಿಯಲ್ಲಿ ಭೂಮಿಯ 1%ಕಡಿಮೆಗೆ ಸಮಾನವಾದ ದ್ರವ್ಯರಾಶಿಯನ್ನು ಉಳಿಸುತ್ತದೆ. ಇವು ಮುಖ್ಯವಾಗಿ ಪುಟ್ಟಗ್ರಹಗಳಿಂದ ಕೂಡಿರುತ್ತದೆ.[೪೪] ಇದು ಮುಖ್ಯ ಪಟ್ಟಿಯಲ್ಲಿ ಪ್ರಸಕ್ತ ದ್ರವ್ಯರಾಶಿಗಿಂತ 10 -20 ಪಟ್ಟು ಹೆಚ್ಚಾಗಿರುತ್ತದೆ. ಇದು ಭೂಮಿಯ ದ್ರವ್ಯರಾಶಿಯ 1/2,000ರಷ್ಟಾಗಿರುತ್ತದೆ.[೪೭] ಎರಡನೇ ಬರಿದಾಗುವಿಕೆ ಅವಧಿಯು ಕ್ಷುದ್ರಗ್ರಹ ಪಟ್ಟಿಯನ್ನು ಅದರ ಪ್ರಸಕ್ತ ದ್ರವ್ಯರಾಶಿಗೆ ಕುಗ್ಗಿಸಿರಬಹುದು. ಗುರು ಮತ್ತು ಶನಿಗ್ರಹಗಳು ತಾತ್ಕಾಲಿಕ 2:1ಕಕ್ಷೆ ಅನುರಣನವನ್ನು ಪ್ರವೇಶಿಸಿದಾಗ ಇದು ಸಂಭವಿಸಿರಬಹುದು ಎಂದು ನಂಬಲಾಗಿದೆ.(ಕೆಳಗೆ ನೋಡಿ).

ಒಳ ಸೌರವ್ಯೂಹಗಳ ಅವಧಿಯ ದೈತ್ಯ ಅಪ್ಪಳಿಕೆಗಳು ಭೂಮಿಯು ಮುಂಚಿನ ಕ್ಷುದ್ರಗ್ರಹ ಪಟ್ಟಿಯಿಂದ ಪ್ರಸಕ್ತ ನೀರಿನ ಅಂಶವನ್ನು(~6×೧೦21ಕೇಜಿ) ಪಡೆಯಲು ಪಾತ್ರವಹಿಸಿರಬಹುದು. ನೀರು ತೀರಾ ಭಾಷ್ಪಶೀಲ ದ್ರವ್ಯವಾದ್ದರಿಂದ ಭೂಮಿಯ ರಚನೆಯ ಕಾಲದಲ್ಲಿ ನೀರಿನ ಉಪಸ್ಥಿತಿಯಿರದೇ ಸೌರವ್ಯೂಹದ ಹೊರ ಮತ್ತು ಶೀತಲ ಭಾಗಗಳಿಂದ ತರುವಾಯ ರವಾನೆಯಾಗಿರಬಹುದು.[೪೮] ನೀರು ಬಹುಶಃ ಗ್ರಹದ ಮೂಲರೂಪಗಳಿಂದ ಮತ್ತು ಪುಟ್ಟ ಗ್ರಹಗಳಿಂದ ರವಾನೆಯಾಗಿರಬಹುದು. ಇದನ್ನು ಗುರುಗ್ರಹವು ಕ್ಷುದ್ರಗ್ರಹದ ಪಟ್ಟಿಯಿಂದ ಎಸೆದಿರಬಹುದು.[೪೫] 2006ರಲ್ಲಿ ಶೋಧಿಸಿದ ಮುಖ್ಯ-ಪಟ್ಟಿ ಧೂಮಕೇತುಗಳ ಸಂಖ್ಯೆಯು ಭೂಮಿಯ ನೀರಿಗೆ ಸಂಭವನೀಯ ಮೂಲವೆಂದು ಕೂಡ ಸೂಚಿಸಿತು.[೪೮][೪೯] ಇದಕ್ಕೆ ತದ್ವಿರುದ್ಧವಾಗಿ ಕೈಪರ್ ಪಟ್ಟಿ ಅಥವಾ ದೂರ ಪ್ರದೇಶಗಳ ಧೂಮಕೇತುಗಳು ಭೂಮಿಯ ನೀರಿನಲ್ಲಿ 6%ಕ್ಕಿಂತ ಹೆಚ್ಚು ರವಾನಿಸಿಲ್ಲ.[೨][೫೦] ಇದೇ ರೀತಿ ಅನ್ಯ ಬಾಹ್ಯಾಕಾಶ ಜೀವಿಗಳಿಂದ ಭೂಮಿಯಲ್ಲಿ ಜೀವಸಂಕುಲ ಉದ್ಭವಿಸಿರಬಹುದು ಎಂದು ಪ್ಯಾನ್ಸ್‌ಪರ್ಮಿಯ ಸಿದ್ಧಾಂತವು ಪ್ರತಿಪಾದಿಸುತ್ತದೆ. ಆದರೆ ಈ ಕಲ್ಪನೆಯು ವ್ಯಾಪಕವಾಗಿ ಅಂಗೀಕಾರ್ಹವಾಗಿಲ್ಲ.[೫೧]

ಗ್ರಹಗಳ ವಲಸೆ[ಬದಲಾಯಿಸಿ]

ನೆಬ್ಯುಲಾರ್ ಸಿದ್ಧಾಂತ ಪ್ರಕಾರ, ಹೊರಗಿನ ಎರಡು ಗ್ರಹಗಳು "ತಪ್ಪು ಸ್ಥಾನ"ಗಳಲ್ಲಿವೆ. ಯುರೇನಸ್ ಮತ್ತು ನೆಪ್ಚ್ಯೂನ್(ಹಿಮ ದೈತ್ಯ)ರು ಎಂದು ಪರಿಚಿತ) ಸೌರ ನೀಹಾರಿಕೆಯ ಕಡಿಮೆ ಸಾಂದ್ರತೆ ಮತ್ತು ಸುದೀರ್ಘ ಪರಿಭ್ರಮಣ ಕಾಲಾವಧಿಯ ಪ್ರದೇಶದಲ್ಲಿ ಅಸ್ತಿತ್ವದಲ್ಲಿರುವುದು ಅವುಗಳ ರಚನೆಯನ್ನು ಅತೀ ಅಸಂಭಾವ್ಯವಾಗಿಸಿದೆ.[೫೨] ಬದಲಿಗೆ ಇವೆರಡು ಹೆಚ್ಚು ವಸ್ತುಗಳು ಲಭ್ಯವಿರುವ ಗುರು ಮತ್ತು ಶನಿ ಗ್ರಹಗಳ ಕಕ್ಷೆಗಳಲ್ಲಿ ರಚನೆಯಾಗಿರಬಹುದು. ನೂರಾರು ದಶಲಕ್ಷ ವರ್ಷಗಳ ಕಾಲಾವಧಿಯಲ್ಲಿ ಅವು ಹೊರಮುಖವಾಗಿ ವಲಸೆ ಹೋಗಿ, ಪ್ರಸಕ್ತ ಸ್ಥಾನಗಳಲ್ಲಿ ಬೇರೂರಿರಬಹುದು.[೩೧]

ಹೊರ ಗ್ರಹಗಳು ಮತ್ತು ಕೈಪರ್ ಪಟ್ಟಿಯನ್ನು ತೋರಿಸುವ ಅನುಕರಣ a) ಗುರು/ಶನಿಯ 2:1 ಅನುರಣದ ಮುಂಚೆ b)ನೆಪ್ಚ್ಯೂನ್ ಕಕ್ಷೆಯ ಸ್ಥಳಾಂತರದ ನಂತರ ಕೈಪರ್ ಪಟ್ಟಿ ವಸ್ತುಗಳು ಸೌರವ್ಯೂಹದೊಳಕ್ಕೆ ಹರಡುವುದು c) ಗುರುವಿನಿಂದ ಕೈಪರ್ ಪಟ್ಟಿ ಕಾಯಗಳ ಉಚ್ಚಾಟನೆ ನಂತರ [೨]

ಹೊರಪ್ರದೇಶ ಗ್ರಹಗಳ ವಲಸೆಯು ಸೌರವ್ಯೂಹದ ಅತ್ಯಂತ ಹೊರಪ್ರದೇಶಗಳ ಗುಣಲಕ್ಷಣಗಳು ಮತ್ತು ಅಸ್ತಿತ್ವಕ್ಕೆ ಕಾರಣವಾಗಿರಬಹುದು.[೩೨] ನೆಪ್ಚ್ಯೂನ್ ಆಚೆ, ಸೌರವ್ಯೂಹವು ಕೈಪರ್ ಪಟ್ಟಿ, ಹರಡಿದ ತಟ್ಟೆ ಮತ್ತು ಊವರ್ಟ್ ಮೋಡಕ್ಕೆ ಮುಂದುವರಿಯುತ್ತದೆ. ಇವು ಮೂರು ಅನೇಕ ಅವಲೋಕಿತ ಧೂಮಕೇತುಗಳ ಉಗಮಸ್ಥಾನಗಳಾಗಿದ್ದು, ಪುಟ್ಟ ಹಿಮದ ಕಾಯಗಳ ವಿರಳ ಸಂಖ್ಯೆಗಳನ್ನು ಹೊಂದಿದೆ. ಸೂರ್ಯನಿಂದ ಇರುವ ದೂರದ ದೃಷ್ಟಿಯಿಂದ ಸೌರ ನೀಹಾರಿಕೆ ಚದುರುವ ಮುಂಚೆ ಗ್ರಹಗಳು ರಚನೆಯಾಗಲು ನಿರಂತರ ವಿಕಾಸ ತುಂಬ ನಿಧಾನವಾಗಿರುತ್ತದೆ. ಆದ್ದರಿಂದ ಆರಂಭಿಕ ತಟ್ಟೆಯಲ್ಲಿ ಗ್ರಹವಾಗಿ ಘನೀಕೃತವಾಗಲು ಸಾಕಷ್ಟು ದ್ರವ್ಯರಾಶಿ ಸಾಂದ್ರತೆಯ ಅಭಾವವಿರುತ್ತದೆ.[೫೨]

ಕೈಪರ್ ಪಟ್ಟಿಯು ಸೂರ್ಯನಿಂದ 30 ಮತ್ತು 55 AU  ದೂರದಲ್ಲಿರುತ್ತದೆ. ದೂರದ ಹರಡಿಕೊಂಡ ತಟ್ಟೆಯು 100AUವಿಸ್ತರಿಸಿದ್ದರೆ,[೩೨] ದೂರದ ಊವರ್ಟ್ ಮೋಡವು 50,000 AUನಿಂದ ಆರಂಭವಾಗುತ್ತದೆ.[೫೩] ಮೂಲತಃ ಕೈಪರ್ ಪಟ್ಟಿಯು ಹೆಚ್ಚು ಸಾಂದ್ರತೆಯಿಂದ ಕೂಡಿದ್ದು ಸೂರ್ಯನಿಗೆ ಹತ್ತಿರವಾಗಿರುತ್ತದೆ. ಅದರ ಹೊರತುದಿಯು ಅಂದಾಜು 30AUದೂರದಲ್ಲಿತ್ತು. ಅದರ ಒಳತುದಿಯು ಯುರೇನಸ್ ಮತ್ತು ನೆಪ್ಚ್ಯೂನ್ ಕಕ್ಷೆಗಳಿಗೆ ಸ್ವಲ್ಪ ಆಚೆ ಇರುತ್ತದೆ. ಯುರೇನಸ್ ಮತ್ತು ನೆಪ್ಚ್ಯೂನ್ ರಚನೆಯಾದಾಗ, ಅವು ಸೂರ್ಯನಿಗೆ ಅತೀ ಸಮೀಪದಲ್ಲಿ(ಬಹುಮಟ್ಟಿಗೆ 15 -20AU ವ್ಯಾಪ್ತಿಯಲ್ಲಿರುತ್ತದೆ)ವಿರುದ್ಧ ಸ್ಥಳಗಳಲ್ಲಿ, ಯುರೇನಸ್ ಸೂರ್ಯನಿಂದ ನೆಪ್ಚ್ಯೂನ್‌ಗಿಂತ ದೂರದಲ್ಲಿ ನೆಲೆಗೊಂಡಿರುತ್ತದೆ.[೨][೩೨]

ಸೌರವ್ಯೂಹದ ರಚನೆಯ ನಂತರ, ದೈತ್ಯಗ್ರಹಗಳ ಕಕ್ಷೆಗಳು ನಿಧಾನವಾಗಿ ಬದಲಾಗುತ್ತವೆ. ಉಳಿದ ಪುಟ್ಟಗ್ರಹಗಳ ಪರಸ್ಪರ ಪ್ರಭಾವದಿಂದ ಇದು ಸಂಭವಿಸುತ್ತದೆ. 500 -600ದಶಲಕ್ಷ ವರ್ಷಗಳ ನಂತರ,(4ಶತಕೋಟಿ ವರ್ಷಗಳ ಹಿಂದೆ)ಗುರು ಮತ್ತು ಶನಿಯು 2:1ಅನುರಣನದಲ್ಲಿತ್ತು. ಸೂರ್ಯನ ಸುತ್ತ ಪ್ರತಿ ಎರಡು ಗುರುಗ್ರಹದ ಪರಿಭ್ರಮಣಕ್ಕೆ ಪ್ರತಿಯಾಗಿ ಶನಿಗ್ರಹವು ಒಮ್ಮೆ ಮಾತ್ರ ಪರಿಭ್ರಮಿಸುತ್ತಿತ್ತು.[೩೨] ಈ ಅನುರಣನವು ಹೊರಪ್ರದೇಶದ ಗ್ರಹಗಳಿಗೆ ಗುರುತ್ವದ ತಳ್ಳುವಿಕೆಯನ್ನು ಸೃಷ್ಟಿಸಿತು. ಇದು ನೆಪ್ಚ್ಯೂನ್ ಯುರೇನಸ್‌ನ್ನು ದಾಟಿ ಮುಂದೆ ಹೋಗಿ ಪ್ರಾಚೀನ ಕೈಪರ್ ಪಟ್ಟಿಕ್ಕೆ ಸಾಗಲು ಕಾರಣವಾಯಿತು. ಗ್ರಹಗಳು ಬಹುತೇಕ ಸಣ್ಣ ಹಿಮಕಾಯಗಳನ್ನು ಒಳಮುಖವಾಗಿ ಹರಡಿದರೆ, ಸ್ವತಃ ಹೊರಪ್ರದೇಶಕ್ಕೆ ಹರಡಿಕೊಂಡವು. ಈ ಪುಟ್ಟಗ್ರಹಗಳು ಅವು ಸಂಧಿಸಿದ ಮುಂದಿನ ಗ್ರಹವನ್ನು ಇದೇ ರೀತಿ ಹರಡಿ, ಗ್ರಹಗಳ ಕಕ್ಷೆಗಳನ್ನು ಹೊರಪ್ರದೇಶಕ್ಕೆ ಚಲಿಸುವಂತೆ ಮಾಡಿ,ಅವು ಒಳಮುಖವಾಗಿ ಚಲಿಸಿದವು.[೩೨] ಈ ಪ್ರಕ್ರಿಯೆಯು ಮುಂದುವರಿದು,ಪುಟ್ಟ ಗ್ರಹಗಳು ಗುರುವಿನ ಜತೆ ಪ್ರಭಾವ ಹೊಂದಿ,ಅದರ ವಿಪುಲ ಗುರುತ್ವಬಲವು ಪುಟ್ಟಗ್ರಹಗಳನ್ನು ಅತ್ಯಂತ ಅಂಡಾಕಾರದ ಕಕ್ಷೆಗಳಿಗೆ ಕಳಿಸಿತು ಅಥವಾ ಸೌರವ್ಯೂಹದಿಂದ ಆಚೆ ಚಿಮ್ಮುವಂತೆ ಮಾಡಿತು. ಇದರಿಂದ ಗುರು ಗ್ರಹವು ಸ್ವಲ್ಪ ಮಟ್ಟಿಗೆ ಒಳಭಾಗಕ್ಕೆ ಚಲಿಸುವಂತಾಯಿತು.[note ೩] ಅತ್ಯಂತ ಅಂಡಾಕಾರದ ಕಕ್ಷೆಗಳಲ್ಲಿ ಹರಡುವಂತೆ ಗುರು ದೂಡಿದ ವಸ್ತುಗಳು ಊವರ್ಟ್ ಕ್ಲೌಡ್(ಧೂಮಕೇತುಗಳ ಮೋಡ) ರಚಿಸಿತು.[೩೨] ನೆಪ್ಚ್ಯೂನ್ ವಲಸೆ ಮೂಲಕ ಕಡಿಮೆ ಪ್ರಮಾಣಕ್ಕೆ ಹರಡಿಕೊಂಡ ವಸ್ತುಗಳಿಂದ ಪ್ರಸಕ್ತ ಕೈಪರ್ ಪಟ್ಟಿ ಮತ್ತು ಹರಡಿದ ತಟ್ಟೆ ರೂಪುಗೊಂಡವು.[೩೨] ಈ ಸನ್ನಿವೇಶವು ಕೈಪರ್ ಪಟ್ಟಿ ಮತ್ತು ಹರಡಿಕೊಂಡ ತಟ್ಟೆಯ ಕಡಿಮೆ ದ್ರವ್ಯರಾಶಿಯ ಬಗ್ಗೆ ವಿವರ ನೀಡುತ್ತದೆ. ಹರಡಿಕೊಂಡ ವಸ್ತುಗಳಲ್ಲಿ ಕೆಲವು, ಪ್ಲೂಟೊ ಸೇರಿದಂತೆ ,ನೆಪ್ಚ್ಯೂನ್ ಕಕ್ಷೆಗೆ ಗುರುತ್ವಾಕರ್ಷಣೆಯಿಂದ ಬಂಧಿತವಾಗಿ,ಸರಾಸರಿ ಚಲನೆ ಅನುರಣನಕ್ಕೆ ಒಳಪಡುತ್ತದೆ.[೫೪] ತರುವಾಯ, ಪುಟ್ಟಗ್ರಹದ ತಟ್ಟೆಯಲ್ಲಿ ಘರ್ಷಣೆಯಿಂದ ಯುರೇನಸ್ ಮತ್ತು ನೆಪ್ಚ್ಯೂನ್ ಕಕ್ಷೆಗಳು ಪುನಃ ವೃತ್ತಾಕಾರದ ರೂಪವನ್ನು ಪಡೆಯುತ್ತವೆ.[೩೨][೫೫]

ಹೊರಪ್ರದೇಶದ ಗ್ರಹಗಳಿಗೆ ವಿರುದ್ಧವಾಗಿ, ಸೌರವ್ಯೂಹದ ಕಾಲಾವಧಿಯಲ್ಲಿ ಒಳಪ್ರದೇಶದ ಗ್ರಹಗಳು ಗಮನಾರ್ಹವಾಗಿ ವಲಸೆಯಾಗಿರಲಿಲ್ಲವೆಂದು ನಂಬಲಾಗಿದೆ. ಏಕೆಂದರೆ ಅವುಗಳ ಕಕ್ಷೆಗಳು ಮಹಾ ಅಪ್ಪಳಿಸುವಿಕೆಗಳ ಅವಧಿಯ ನಂತರವೂ ಸ್ಥಿರವಾಗಿ ಉಳಿದಿತ್ತು.[೨೯][೨೯]

ಇತ್ತೀಚಿನ ಭಾರೀ ಅಪ್ಪಳಿಸುವಿಕೆ(ಡಿಕ್ಕಿ) ಮತ್ತು ನಂತರ[ಬದಲಾಯಿಸಿ]

ಅರಿಜೋನಾದಲ್ಲಿ ಉಲ್ಕೆಯ ಕುಳಿಕೇವಲ 50ಮೀ ಅಗಲದ ಇಂಪಾಕ್ಟರ್(ಅಪ್ಪಳಿಸಿದ ಉಲ್ಕೆ)ನಿಂದ 50,000ವರ್ಷಗಳ ಹಿಂದೆ ಸೃಷ್ಟಿಯಾದ ಈ ಕುಳಿಯು, ಸೌರವ್ಯೂಹದ ನಿರಂತರ ವಿಕಾಸ ಇನ್ನೂ ಮುಗಿದಿಲ್ಲ ಎನ್ನುವುದನ್ನು ನೆನಪಿಸುತ್ತದೆ.

ಹೊರಪ್ರದೇಶದ ಗ್ರಹಗಳ ವಲಸೆಯಿಂದ ಉಂಟಾದ ಗುರುತ್ವದ ಅಡಚಣೆಯು ಒಳಸೌರವ್ಯೂಹಕ್ಕೆ ಅಪಾರ ಸಂಖ್ಯೆಯ ಕ್ಷುದ್ರಗ್ರಹಗಳನ್ನು ಕಳಿಸಿರಬಹುದು.ಇದು ತೀವ್ರವಾಗಿ ಮೂಲ ಪಟ್ಟಿಯನ್ನು ಬರಿದುಗೊಳಿಸಿ,ಇಂದಿನ ತೀವ್ರ ಕಡಿಮೆ ದ್ರವ್ಯರಾಶಿಗೆ ಮುಟ್ಟಿದೆ.[೪೪] ಈ ಘಟನೆಯು ಇತ್ತೀಚಿನ ಭಾರೀ ಅಪ್ಪಳಿಸುವಿಕೆ(ಡಿಕ್ಕಿ) ಅಂದರೆ ಸುಮಾರು 4 ಶತಕೋಟಿ ವರ್ಷಗಳ ಹಿಂದೆ ಸಂಭವಿಸಿದ ಡಿಕ್ಕಿಗೆ ಪ್ರಚೋದನೆ ನೀಡಿರಬಹುದು. ಇದು ಸೌರವ್ಯೂಹವು ರಚನೆಯಾದ 500-600ವರ್ಷಗಳ ನಂತರ ಸಂಭವಿಸಿದೆ.[೨][೫೬] ಭಾರೀ ಅಪ್ಪಳಿಸುವಿಕೆ ಅವಧಿಯು ಅನೇಕ ನೂರಾರು ದಶಲಕ್ಷ ವರ್ಷಗಳ ಕಾಲ ಉಳಿಯಿತು ಮತ್ತು ಒಳ ಸೌರವ್ಯವಸ್ಥೆಯಾದ ಚಂದ್ರ ಮತ್ತು ಬುಧಗ್ರಹಗಳ ಬೌಗೋಳಿಕವಾಗಿ ಮೃತಪ್ರದೇಶಗಳಲ್ಲಿ ಈಗಲೂ ಗೋಚರಿಸುವ ಕುಳಿಗಳ ಮೂಲಕ ಇದಕ್ಕೆ ಸಾಕ್ಷ್ಯ ಒದಗಿಸುತ್ತದೆ.[೨][೫೭] ಭೂಮಿಯಲ್ಲಿ ಜೀವಸಂಕುಲಕ್ಕೆ ಸಾಕ್ಷ್ಯವನ್ನು 3.8ಶತಕೋಟಿ ವರ್ಷಗಳ ಹಿಂದಕ್ಕೆ ಒದಗಿಸುತ್ತದೆ. ಲೇಟ್ ಹೆವಿ ಬೊಂಬಾರ್ಡ್‌ಮೆಂಟ್(ಇತ್ತೀಚಿನ ಭಾರೀ ಅಪ್ಪಳಿಸುವಿಕೆ) ಅಂತ್ಯಗೊಂಡ ತಕ್ಷಣವೇ ಜೀವಸಂಕುಲ ಸೃಷ್ಟಿಯಾಯಿತು.[೫೮]

ಅಪ್ಪಳಿಸುವಿಕೆ(ಡಿಕ್ಕಿಗಳು)ಗಳು ಸೌರವ್ಯೂಹಗಳ ವಿಕಾಸದ ನಿಯಮಿತ(ಪ್ರಸಕ್ತ ವಿರಳವಾಗಿ)ಭಾಗವೆಂದು ನಂಬಲಾಗಿತ್ತು. 1994ರಲ್ಲಿ ಧೂಮಕೇತು ಶೂಮೇಕರ್-ಲೆವಿ 9 ಗುರುಗ್ರಹದ ಜತೆ ಡಿಕ್ಕಿಯಿಂದ, 2009 ಗುರುಗ್ರಹದ ಅಪ್ಪಳಿಸುವಿಕೆ ಘಟನೆ ಮತ್ತು ಡಿಕ್ಕಿಯಿಂದ ಅರಿಜೋನಾದಲ್ಲಿ ಉಲ್ಕೆಯ ಕುಳಿಯ ಲಕ್ಷಣಗಳು ಅಪ್ಪಳಿಸುವಿಕೆ ಮುಂದುವರಿದಿರುವುದಕ್ಕೆ ಸಾಕ್ಷಿವೊದಗಿಸಿದೆ. ಹೀಗಾಗಿ ನಿರಂತರ ವಿಕಾಸದ ಪ್ರಕ್ರಿಯೆ ಇನ್ನೂ ಪೂರ್ಣವಾಗಿಲ್ಲ ಹಾಗು ಇನ್ನೂ ಭೂಮಿಯ ಮೇಲೆ ಜೀವಸಂಕುಲಕ್ಕೆ ಬೆದರಿಕೆಯೊಡ್ಡಿದೆ.[೫೯][೬೦]

ಸೌರವ್ಯೂಹ ವಿಕಾಸದ ಕಾಲಾವಧಿಯಲ್ಲಿ ದೈತ್ಯ ಗ್ರಹಗಳ ಗುರುತ್ವಬಲದಿಂದ ಒಳಸೌರವ್ಯೂಹದಿಂದ ಧೂಮಕೇತುಗಳು ಚಿಮ್ಮಿ ಹೊರಪ್ರದೇಶಕ್ಕೆ ಸಾವಿರಾರು AUಗಳ ದೂರದಲ್ಲಿ ಊವರ್ಟ್ ಕ್ಲೌಡ್(ಧೂಮಕೇತುಗಳ ಮೋಡ) ರಚನೆಯಾಯಿತು. ಇದು ಸೂರ್ಯನ ಗುರುತ್ವಬಲದಿಂದ ಅತೀ ದೂರದ ಸ್ಥಳದಲ್ಲಿ ಧೂಮಕೇತುಗಳ ತಲೆಯಭಾಗಗಳ ವೃತ್ತಾಕಾರದ ಹೊರ ಗುಂಪಾಗಿದೆ. ತರುವಾಯ ಸುಮಾರು 800 ದಶಲಕ್ಷ ವರ್ಷಗಳ ನಂತರ,ಗ್ಯಾಲಕ್ಸಿಯ ಗುರುತ್ವ ಎಳೆತಗಳಿಂದ ಉಂಟಾದ ಗುರುತ್ವ ಅಡಚಣೆಗಳಿಂದ, ಹಾದುಹೋಗುವ ನಕ್ಷತ್ರಗಳು ಮತ್ತು ದೈತ್ಯ ಆಣ್ವಿಕ ಮೋಡಗಳು, ಮೋಡವನ್ನು ಬರಿದುಮಾಡಲು ಆರಂಭಿಸಿ, ಧೂಮಕೇತುಗಳನ್ನು ಒಳ ಸೌರವ್ಯೂಹಕ್ಕೆ ಕಳಿಸಿದವು.[೬೧] ಹೊರ ಸೌರವ್ಯೂಹದ ವಿಕಾಸ ಕೂಡ ಸೌರಮಾರುತ, ಪುಟ್ಟ ಉಲ್ಕೆಗಳು ಮತ್ತು ಅಂತರತಾರಾ ಮಾಧ್ಯಮದ ತಟಸ್ಥ ಭಾಗಗಳ ಮೂಲಕ ಬಾಹ್ಯಾಕಾಶ ಹವಾಗುಣದ ಪ್ರಭಾವಕ್ಕೆ ಒಳಗಾದಂತೆ ಕಂಡುಬಂದಿದೆ.[೬೨]

[೬೩] ಇತ್ತೀಚಿನ ಭಾರಿ ಅಪ್ಪಳಿಸುವಿಕೆ ನಂತರ ಕ್ಷುದ್ರಗ್ರಹ ಪಟ್ಟಿಯ ವಿಕಾಸವು ಮುಖ್ಯವಾಗಿ ಡಿಕ್ಕಿಗಳಿಂದ ಉಂಟಾಗಿದೆ. ರಭಸದ ಡಿಕ್ಕಿಯಿಂದ ಚಿಮ್ಮಿದ ಯಾವುದೇ ವಸ್ತುವನ್ನು ಉಳಿಸಿಕೊಳ್ಳಲು ದೊಡ್ಡ ದ್ರವ್ಯರಾಶಿ ಹೊಂದಿದ ವಸ್ತುಗಳು ಸಾಕಷ್ಟು ಗುರುತ್ವಬಲವನ್ನು ಒಳಗೊಂಡಿರುತ್ತದೆ.

ಆದರೆ ಕ್ಷುದ್ರಗ್ರಹದ ಪಟ್ಟಿಯಲ್ಲಿ ಹೀಗಿರುವುದಿಲ್ಲ. ಇದರ ಫಲವಾಗಿ,ಅನೇಕ ದೊಡ್ಡ ವಸ್ತುಗಳು ಚೂರಾಗಿ, ಕೆಲವು ಬಾರಿ ಹೊಸ ವಸ್ತುಗಳು ಕಡಿಮೆ ರಭಸದ ಡಿಕ್ಕಿಗಳ ಕಾರಣ ಉಂಟಾದ ಅವಶೇಷಗಳಿಂದ ತಯಾರಾಗಿವೆ.[೬೩] ಕ್ಷುದ್ರಗ್ರಹಗಳ ಸುತ್ತ ಇರುವ ಚಂದ್ರರನ್ನು ಮಾತೃ ವಸ್ತುವಿನಿಂದ ದೂರಕ್ಕೆ ಚಿಮ್ಮಿದ ವಸ್ತುಗಳು ಅದರ ಗುರುತ್ವಬಲದಿಂದ ತಪ್ಪಿಸಿಕೊಳ್ಳುವಷ್ಟು ಶಕ್ತಿಯಿಲ್ಲದ ವಸ್ತುಗಳ ಘನೀಕರಣಗಳು ಎಂದು ವಿವರಣೆ ನೀಡಬಹುದು.[೬೪]

ಚಂದ್ರರು[ಬದಲಾಯಿಸಿ]

ಚಂದ್ರರು ಬಹುತೇಕ ಗ್ರಹಗಳು ಮತ್ತು ಅನೇಕ ಇತರೆ ಸೌರವ್ಯೂಹದ ಕಾಯಗಳ ಸುತ್ತ ಅಸ್ತಿತ್ವದಲ್ಲಿವೆ. ಈ ನೈಸರ್ಗಿಕ ಉಪಗ್ರಹಗಳು ಮೂರು ಕಾರ್ಯಸಾಧ್ಯ ವಿಧಾನಗಳಿಂದ ಹುಟ್ಟಿರಬಹುದು:

  • ಸುತ್ತಲಿರುವ ಗ್ರಹದ ತಟ್ಟೆಯಿಂದ ಸಹರಚನೆಯಾಗಿರಬಹುದು(ಅನಿಲ ದೈತ್ಯಗಳ ಪ್ರಕರಣಗಳಲ್ಲಿ ಮಾತ್ರ);
  • ಅಪ್ಪಳಿಸುವ ಅವಶೇಷದಿಂದ ರಚನೆ(ಆಳವಿಲ್ಲದ ಕೋನದಲ್ಲಿ ದೊಡ್ಡ ಡಿಕ್ಕಿ) ಮತ್ತು
  • ಹಾದುಹೋಗುವ ವಸ್ತುವನ್ನು ಸೆರೆಹಿಡಿಯುವುದು.

ಗುರು ಮತ್ತು ಶನಿ ಗ್ರಹಗಳು ಅನೇಕ ಸಂಖ್ಯೆಯ ದೊಡ್ಡ ಚಂದ್ರರನ್ನು, ಉದಾಹರಣೆಗೆ ಲೊ,ಯುರೋಪಾ, ಗ್ಯಾನಿಮೇಡ್ ಮತ್ತು ಟೈಟಾನ್ ಹೊಂದಿವೆ. ಪ್ರತಿ ದೈತ್ಯ ಗ್ರಹದ ತಟ್ಟೆಗಳಿಂದ ಇವು ಹುಟ್ಟಿವೆ. ಸೂರ್ಯನ ಸುತ್ತಲಿನ ತಟ್ಟೆಯಿಂದ ಗ್ರಹಗಳು ರಚನೆಯಾದ ರೀತಿಯಲ್ಲೇ ಇವು ರಚನೆಯಾಗಿವೆ.[೬೫] ಅದರ ಹುಟ್ಟನ್ನು ಚಂದ್ರರ ದೊಡ್ಡ ಗಾತ್ರಗಳಿಂದ ಮತ್ತು ಗ್ರಹಕ್ಕೆ ಅದರ ಸಾಮಿಪ್ಯದಿಂದ ಸೂಚಿಸಲಾಗಿದೆ. ಈ ಲಕ್ಷಣಗಳನ್ನು ಸೆರೆಹಿಡಿಯುವ(ಆಕರ್ಷಿಸುವ)ಮೂಲಕ ಸಾಧಿಸಲು ಸಾಧ್ಯವಿಲ್ಲ. ಮುಖ್ಯಕಾಯಗಳ ಅನಿಲ ಲಕ್ಷಣವು ಡಿಕ್ಕಿಹೊಡೆಯುವ ಅವಶೇಷದಿಂದ ಚಂದ್ರನನ್ನು ರಚನೆಮಾಡುವುದು ಕೂಡ ಅಸಾಧ್ಯ. ಅನಿಲ ದೈತ್ಯಗಳ ಹೊರ ಚಂದ್ರರು ಸಣ್ಣಗಿದ್ದು, ಅನಿರ್ಬಂಧಿತ ಓರೆಗಳಿಂದ ವಿಕೇಂದ್ರಿಯ ಕಕ್ಷೆಗಳು ಇರಬೇಕಾಗುತ್ತದೆ. ಸೆರೆಹಿಡಿದ ಕಾಯಗಳಿಂದ ಈ ಲಕ್ಷಣಗಳನ್ನು ನಿರೀಕ್ಷಿಸಲಾಗುತ್ತದೆ.[೬೬][೬೭] ಬಹುತೇಕ ಚಂದ್ರರು ಮೂಲಕಾಯಗಳ ಪರಿಭ್ರಮಣೆಗೆ ವಿರುದ್ಧ ದಿಕ್ಕಿನಲ್ಲಿ ಕಕ್ಷೆಯಲ್ಲಿ ಸುತ್ತುಹಾಕುತ್ತವೆ.

ಅತೀ ದೊಡ್ಡ ಅನಿಯಮಿತ ಚಂದ್ರ ನೆಪ್ಚ್ಯೂನ್‌ನ ಚಂದ್ರ ಟ್ರೈಟಾನ್. ಇದು ಆಕರ್ಷಣೆಗೆ ಒಳಗಾದ(ಸೆರೆಸಿಕ್ಕ) ಕೈಪರ್ ಪಟ್ಟಿಯ ವಸ್ತುವೆಂದು ನಂಬಲಾಗಿದೆ.[೬೦]

ಘನ ಸೌರವ್ಯೂಹದ ಕಾಯಗಳ ಚಂದ್ರರು ಡಿಕ್ಕಿಗಳಿಂದ ಮತ್ತು ಆಕರ್ಷಣೆ(ಸೆರೆ)ಯಿಂದ ಸೃಷ್ಟಿಯಾಗಿವೆ. ಮಂಗಳನ ಎರಡು ಸಣ್ಣ ಚಂದ್ರರಾದ, ಡೈಮೋಸ್ ಮತ್ತು ಫೋಬೋಸ್‌ ಸೆರೆಸಿಕ್ಕ ಕ್ಷುದ್ರಗ್ರಹಗಳು ಎಂದು ನಂಬಲಾಗಿದೆ.[೬೮] ಭೂಮಿಯ ಚಂದ್ರನು ದೊಡ್ಡ, ಒಂಟಿ ಡಿಕ್ಕಿಯಿಂದ ರಚನೆಯಾಗಿದೆಯೆಂದು ನಂಬಲಾಗಿದೆ.[೬೯][೭೦] ಡಿಕ್ಕಿಯಾದ ವಸ್ತುವು ಮಂಗಳನನ್ನು ಹೋಲುವ ದ್ರವ್ಯರಾಶಿಯನ್ನು ಹೊಂದಿರಬಹುದು. ದೈತ್ಯ ಡಿಕ್ಕಿಗಳ ಅವಧಿಯ ಅಂತ್ಯಕ್ಕೆ ಸಮೀಪದಲ್ಲೇ ಈ ಡಿಕ್ಕಿ ಕೂಡ ಸಂಭವಿಸಿರಬಹುದು. ಈ ಘರ್ಷಣೆಯು ಡಿಕ್ಕಿ ಹೊಡೆದ ಕಾಯದ ಒಳಭಾಗದ ತಿರುಳು ಮತ್ತು ಹೊರಭಾಗ ಚಿಪ್ಪಿನ ಮಧ್ಯದ ಪದರದ ಸ್ವಲ್ಪ ಭಾಗವನ್ನು ಕಕ್ಷೆಗೆ ದೂಡಿರಬಹುದು. ಇವು ನಂತರ ಚಂದ್ರನಾಗಿ ಒಂದುಗೂಡಿರಬಹುದು.[೬೯] ಈ ಡಿಕ್ಕಿಯು ಬಹುಶಃ ಭೂಮಿಯ ರಚನೆಯಲ್ಲಿನ ಸರಣಿ ವಿಲೀನಗಳಲ್ಲಿ ಕೊನೆಯದಾಗಿರಬಹುದು. ಮಂಗಳನ ಗಾತ್ರದ ವಸ್ತು ಸ್ಥಿರ ಭೂಮಿ-ಸೂರ್ಯನ ಲ್ಯಾಗ್‌ರೇಂಜಿಯನ್ ಬಿಂದು(ಎರಡು ಕಾಯಗಳ ಪ್ರಭಾವಕ್ಕೆ ಸಿಕ್ಕಿದ ವಸ್ತು ಸ್ಥಿರವಾಗಿ ನಿಲ್ಲುವ ಬಿಂದು)( L4ಅಥವಾಟೆಂಪ್ಲೇಟು:L5)ಮತ್ತು ಅದರ ಸ್ಥಾನ ಬದಲಾಯಿಸಿರಬಹುದು ಎಂದು ಊಹಿಸಲಾಗಿದೆ.[೭೧] ಪ್ಲೂಟೊನ ಚಂದ್ರ ಚಾರೊನ್ ಕೂಡ ದೊಡ್ಡ ಡಿಕ್ಕಿಯಿಂದ ರಚನೆಯಾಗಿರಬಹುದು. ಸೌರವ್ಯೂಹದಲ್ಲಿ ಉಪಗ್ರಹದ ದ್ರವ್ಯರಾಶಿಯು ದೊಡ್ಡ ಕಾಯದ ಕನಿಷ್ಠ 1% ಇರುವುದು ಸೌರವ್ಯೂಹದಲ್ಲಿ ಪ್ಲೂಟೊ-ಚಾರೊನ್ ಮತ್ತು ಭೂಮಿಯ-ಚಂದ್ರ ವ್ಯವಸ್ಥೆಗಳೆರಡು ಮಾತ್ರ.[೭೨]

ಭವಿಷ್ಯ[ಬದಲಾಯಿಸಿ]

ಹರ್ಟ್ಜ್‌ಸ್ಪ್ರಂಗ್ ರಸೆಲ್ ರೇಖಾಚಿತ್ರದ ಮುಖ್ಯ ಅನುಕ್ರಮದಿಂದ ಅದರ ವಿಕಾಸ ಆರಂಭವಾಗಿ ಕೆಂಪು ದೈತ್ಯ ಹಂತ ತಲುಪುವ ತನಕ ನಮಗೆ ತಿಳಿದಿರುವ ಸೌರವ್ಯೂಹದಲ್ಲಿ ಸೂರ್ಯ ತನ್ನ ತಿರುಳಿನಲ್ಲಿರುವ(ಮಧ್ಯಭಾಗ) ಎಲ್ಲ ಜಲಜನಕ ಇಂಧನವನ್ನು ಹೀಲಿಯಂಗೆ ಶಾಖದಿಂದ ಕರಗಿಸುವ ತನಕ, ದಿಢೀರ್ ಪರಿವರ್ತನೆ ಆಗುವುದಿಲ್ಲ ಎಂದು ಖಗೋಳಶಾಸ್ತ್ರಜ್ಞರು ಅಂದಾಜು ಮಾಡಿದ್ದಾರೆ. ಆದರೂ ಸಹ,ಸೌರವ್ಯೂಹವು ತನ್ನ ವಿಕಾಸವನ್ನು ಅಲ್ಲಿಯವರೆಗೆ ಮುಂದುವರಿಸಿರುತ್ತದೆ.

ಸುದೀರ್ಘಾವಧಿಯ ಸ್ಥಿರತೆ[ಬದಲಾಯಿಸಿ]

ಸೌರವ್ಯೂಹವು ಅಸ್ತವ್ಯಸ್ತತೆ ಸಿದ್ಧಾಂತದಿಂದ ಕೂಡಿದ್ದು,[೭೩] ಗ್ರಹಗಳ ಕಕ್ಷೆಗಳು ಸುದೀರ್ಘಾವಧಿಯ ವ್ಯತ್ಯಾಸಗಳಿಗೆ ಮುಕ್ತವಾಗಿರುತ್ತದೆ. ಅಸ್ತವ್ಯಸ್ತತೆಯ ಒಂದು ಗಮನಾರ್ಹ ಉದಾಹರಣೆಯೆಂದರೆ ನೆಪ್ಚ್ಯೂನ್-ಪ್ಲೂಟೊ ವ್ಯವಸ್ಥೆ. ಇದು 3:2 ಕಕ್ಷೀಯ ಅನುರಣನಲ್ಲಿ ನೆಲೆಸಿದೆ. ಅನುರಣನವು ಸ್ವತಃ ಸ್ಥಿರವಾಗಿ ಉಳಿದರೂ, ಭವಿಷ್ಯದ 10-20 ದಶಲಕ್ಷ ವರ್ಷ(ಲ್ಯಾಪುನೋವ್ ಕಾಲ)ಗಳಲ್ಲಿ ಯಾವುದೇ ನಿಖರತೆಯ ಪ್ರಮಾಣದೊಂದಿಗೆ ಪ್ಲೂಟೊ ಸ್ಥಾನವನ್ನು ಮುಂಗಾಣುವುದು ಅಸಾಧ್ಯ.[೭೪] ಇನ್ನೊಂದು ಉದಾಹರಣೆಯು ಭೂಮಿಯ ಕಕ್ಷೀಯ ಓರೆ. ಇದು ಚಂದ್ರನ ಜತೆ ಗುರುತ್ವಾಕರ್ಷಣೆ ಸಂಪರ್ಕಗಳಿಂದ ಭೂಮಿಯ ಮಧ್ಯಪದರದಲ್ಲಿ ಉಂಟಾದ ಘರ್ಷಣೆ.(ಕೆಳಗೆ ನೋಡಿ). ಇದು ಈಗಿನಿಂದ 1.5 ಮತ್ತು 4 .5 ಶತಕೋಟಿ ವರ್ಷಗಳ ನಡುವೆ ಒಂದು ಹಂತದಲ್ಲಿ ಗಣನೆಗೆ ಅಸಾಧ್ಯವಾಗಬಹುದು.[೭೫]

ಹೊರ ಗ್ರಹಗಳ ಕಕ್ಷೆಗಳು ಸುದೀರ್ಘ ಕಾಲಾವಧಿಗಳಲ್ಲಿ ಅಸ್ತವ್ಯಸ್ತವಾಗಿದ್ದು, ಅವು 2-230 ದಶಲಕ್ಷ ವರ್ಷಗಳ ವ್ಯಾಪ್ತಿಯಲ್ಲಿ ಲ್ಯಾಪುನೋವ್ ಕಾಲವನ್ನು ಹೊಂದಿದೆ.[೭೬] ಇವೆಲ್ಲ ಪ್ರಕರಣಗಳಲ್ಲಿ ಗ್ರಹಗಳ ಸ್ಥಾನವನ್ನು ಅದರ ಕಕ್ಷೆಯಲ್ಲಿ ಯಾವುದೇ ಖಚಿತತೆಯಿಂದ ಮುಂಗಾಣುವುದು ಅಸಾಧ್ಯವೆಂದು ಅರ್ಥೈಸಬಹುದು.(ಉದಾಹರಣೆಗೆ ಚಳಿಗಾಲ ಮತ್ತು ಬೇಸಿಗೆಯ ಕಾಲಾವಧಿ ಅನಿಶ್ಚಿತತೆಯಿಂದ ಕೂಡಿದೆ).ಆದರೆ ಕೆಲವು ಪ್ರಕರಣಗಳಲ್ಲಿ ಕಕ್ಷೆಗಳು ಸ್ವತಃ ಗಮನಾರ್ಹವಾಗಿ ಬದಲಾಗಬಹುದು. ಇಂತಹ ಅಸ್ತವ್ಯಸ್ತತೆಗಳು ವಿಕೇಂದ್ರಿಯತೆಗಳಲ್ಲಿ ಬದಲಾವಣೆಗಳಿಂದ ಹೆಚ್ಚು ಬಲವಾಗಿ ಬಿಂಬಿತವಾಗುತ್ತದೆ. ಕೆಲವು ಗ್ರಹಗಳ ಕಕ್ಷೆಗಳು ಹೆಚ್ಚು ಕಡಿಮೆ ಅಂಡಾಕಾರಕ್ಕೆ ತಿರುಗುತ್ತದೆ.[೭೭]

ಅಂತಿಮವಾಗಿ ಸೌರವ್ಯೂಹವು ಎಷ್ಟು ಸ್ಥಿರವಾಗಿದೆಯೆಂದರೆ ಮುಂದಿನ ಕೆಲವು ಶತಕೋಟಿ ವರ್ಷಗಳವರೆಗೆ ಯಾವುದೇ ಗ್ರಹಗಳು ಪರಸ್ಪರ ಡಿಕ್ಕಿ ಹೊಡೆಯುವುದಿಲ್ಲ ಮತ್ತು ಸೌರವ್ಯೂಹದಿಂದ ಚಿಮ್ಮಿ ಹೊರಕ್ಕೆ ಹೋಗುವುದಿಲ್ಲ.[೭೬] ಇದನ್ನು ಮೀರಿ, ಐದು ಶತಕೋಟಿ ವರ್ಷಗಳಲ್ಲಿ ಮಂಗಳನ ವಿಕೇಂದ್ರಿಯತೆ ಸುಮಾರು 0.2ಕ್ಕೆ ಬೆಳೆಯಬಹುದು. ಇದು ಭೂಮಿ ಹಾದುಹೋಗುವ ಕಕ್ಷೆಯಲ್ಲಿದ್ದು, ಸಂಭವನೀಯ ಅಪ್ಪಳಿಸುವಿಕೆಗೆ ದಾರಿ ಕಲ್ಪಿಸಬಹುದು. ಇದೇ ಕಾಲಾವಧಿಯಲ್ಲಿ ಬುಧನ ವಿಕೇಂದ್ರೀಯತೆ ಇನ್ನಷ್ಟು ಬೆಳೆದು, ಶುಕ್ರ ಗ್ರಹದ ಜತೆ ನಿಕಟ ಘರ್ಷಣೆಯು ಅದನ್ನು ಸೌರವ್ಯೂಹದಿಂದ ಹೊರಕ್ಕೆ ಕಳಿಸಬಹುದು[೭೩] ಅಥವಾ ಶುಕ್ರ ಅಥವಾ ಭೂಮಿಯ ಜತೆ ಘರ್ಷಣೆಗೆ ದೂಡಬಹುದು.[೭೮]

ಚಂದ್ರ-ಉಂಗುರ ವ್ಯವಸ್ಥೆಗಳು[ಬದಲಾಯಿಸಿ]

ಚಂದ್ರನ ವ್ಯವಸ್ಥೆಗಳ ವಿಕಾಸಗಳು ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಶಕ್ತಿಗಳಿಂದ ಪ್ರೇರಿತವಾಗಿವೆ. ಚಂದ್ರನು ಪರಿಭ್ರಮಿಸುವ ಮುಖ್ಯಕಾಯದಲ್ಲಿ ಗುರುತ್ವಬಲದ ವಿರೂಪಉಂಟುಮಾಡುತ್ತದೆ. ಮುಖ್ಯಕಾಯದ ವ್ಯಾಸದಲ್ಲಿ ಗುರುತ್ವ ಬಲದ ವ್ಯತ್ಯಾಸವಿರುವ ಕಾರಣದಿಂದ ಹೀಗಾಗುತ್ತದೆ. ಚಂದ್ರನು ಗ್ರಹದ ಪರಿಭ್ರಮಣೆಯ ದಿಕ್ಕಿನಲ್ಲೇ ಸುತ್ತುತ್ತಿದ್ದರೆ ಮತ್ತು ಗ್ರಹವು ಚಂದ್ರನ ಪರಿಭ್ರಮಣ ವೇಗಕ್ಕಿಂತ ಹೆಚ್ಚು ವೇಗದಲ್ಲಿ ಸುತ್ತುತ್ತಿದ್ದರೆ, ವಿರೂಪವು ಚಂದ್ರನನ್ನು ಸತತವಾಗಿ ಮುಂದಕ್ಕೆ ಎಳೆಯುತ್ತದೆ. ಈ ಪರಿಸ್ಥಿತಿಯಲ್ಲಿ, ಕೋನೀಯ ಆವೇಗವು ಮುಖ್ಯಕಾಯದ ಪರಿಭ್ರಮಣೆಯಿಂದ ಉಪಗ್ರಹದ ಪರಿಭ್ರಮಣೆಗೆ ವರ್ಗಾವಣೆಯಾಗುತ್ತದೆ. ಚಂದ್ರನು ಶಕ್ತಿಯನ್ನು ಗಳಿಸಿಕೊಂಡು,ಕ್ರಮೇಣ ಹೊರಮುಖವಾಗಿ ಸುತ್ತುತ್ತದೆ ಹಾಗು ಮುಖ್ಯಕಾಯವು ಕಾಲಾಂತರದಲ್ಲಿ ಹೆಚ್ಚು ನಿಧಾನವಾಗಿ ಪರಿಭ್ರಮಿಸುತ್ತದೆ.

ಈ ವಿನ್ಯಾಸದ ಒಂದು ಉದಾಹರಣೆ ಭೂಮಿ ಮತ್ತು ಚಂದ್ರ. ಇಂದು ಚಂದ್ರನು ಭೂಮಿಯತ್ತ ಒಂದೇ ಬದಿಯಲ್ಲಿ ಗುರುತ್ವಬಲದ ಕಾರಣದಿಂದ ಮುಖ ಮಾಡಿರುತ್ತದೆ(ಟೈಡಲಿ ಲಾಕ್ಡ್).ಭೂಮಿಯ ಸುತ್ತ ಅದರ ಒಂದು ಪರಿಭ್ರಮಣೆಯು (ಪ್ರಸಕ್ತ 29 ದಿನಗಳು) ಅದರ ಕಕ್ಷೆಯ ಸುತ್ತ ಒಂದು ಪರಿಭ್ರಮಣೆಗೆ ಸಮನಾಗಿರುತ್ತದೆ. ಆದ್ದರಿಂದ ಅದು ಭೂಮಿಗೆ ಸದಾ ತನ್ನ ಒಂದು ಬದಿಯ ಮುಖವನ್ನು ತೋರಿಸುತ್ತದೆ. ಚಂದ್ರನು ಭೂಮಿಯಿಂದ ಹಿಮ್ಮೆಟ್ಟುವುದನ್ನು ಮುಂದುವರಿಸುತ್ತದೆ. ಮತ್ತು ಭೂಮಿಯ ಪರಿಭ್ರಮಣೆಯು ಕ್ರಮೇಣ ನಿಧಾನವಾಗುತ್ತದೆ. ಸುಮಾರು 50ಶತಕೋಟಿ ವರ್ಷಗಳಲ್ಲಿ, ಸೂರ್ಯನ ವಿಸ್ತರಣೆಯಿಂದ ಉಳಿದುಕೊಂಡರೆ ಭೂಮಿ ಮತ್ತು ಚಂದ್ರ ಪರಸ್ಪರ ಒಂದೇ ಮುಖದಲ್ಲಿ ಬಂಧಿತವಾಗಿ ಪರಿಭ್ರಮಣ-ಕಕ್ಷೆ ಅನುರಣನದಲ್ಲಿ ಪ್ರತಿಯೊಂದು ಸಿಕ್ಕಿಬೀಳುತ್ತದೆ. ಇದರಲ್ಲಿ ಚಂದ್ರನು ಭೂಮಿಯನ್ನು 47 ದಿನಗಳಲ್ಲಿ ಸುತ್ತುತ್ತದೆ ಹಾಗೂ ಚಂದ್ರ ಮತ್ತು ಭೂಮಿ ಒಂದೇ ಕಾಲದಲ್ಲಿ ತಮ್ಮ ಕಕ್ಷೆಗಳಲ್ಲಿ ತಿರುಗುತ್ತವೆ. ಪ್ರತಿಯೊಂದು ಇನ್ನೊಂದರ ಅರೆಗೋಳದಿಂದ ಗೋಚರಿಸುತ್ತದೆ.[೭೯][೮೦] ಇತರೆ ಉದಾಹರಣೆಗಳುಗುರುವಿನ ಗೆಲಿಲಿಯನ್ ಚಂದ್ರರು(ಅದಲ್ಲದೇ ಗುರುವಿನ ಅನೇಕ ಸಣ್ಣ ಚಂದ್ರರು) [೮೧] ಹಾಗೂಶನಿಯ ಬಹುತೇಕ ದೊಡ್ಡ ಗಾತ್ರದ ಚಂದ್ರರು.[೮೨]

ವಾಯೇಜರ್ 2 ತೆಗೆದ ನೆಪ್ಚ್ಯೂನ್ ಮತ್ತು ಚಂದ್ರ ಟ್ರೈಟಾನ್‌ನ ಚಿತ್ರಟ್ರೈಟಾನ್‌ನ ಕಕ್ಷೆಯು ತರುವಾಯ ನೆಪ್ಚ್ಯೂನ್‌ನ ರೋಚೆ ಮಿತಿಯೊಳಗೆ ಪ್ರವೇಶಿಸಿ ಅದನ್ನು ಹರಿದು ಹೊಸ ಉಂಗುರ ವ್ಯವಸ್ಥೆಯನ್ನು ಸೃಷ್ಟಿಸುವ ಸಂಭವವಿದೆ.

ಮುಖ್ಯಕಾಯ ಕಕ್ಷೆಯ ಸುತ್ತ ಪರಿಭ್ರಮಿಸುವ ವೇಗಕ್ಕಿಂತ ಹೆಚ್ಚು ವೇಗದಲ್ಲಿ ಚಂದ್ರನು ಮುಖ್ಯಕಾಯದ ಸುತ್ತ ತಿರುಗುತ್ತಿದ್ದರೆ ಅಥವಾ ಗ್ರಹದ ವಿರುದ್ಧ ದಿಕ್ಕಿನಲ್ಲಿ ತಿರುಗುತ್ತಿದ್ದರೆ ಭಿನ್ನ ಸನ್ನಿವೇಶ ಉಂಟಾಗುತ್ತಿತ್ತು. ಈ ಪ್ರಕರಣಗಳಲ್ಲಿ, ಗುರುತ್ವದ ವಿರೂಪವು ಚಂದ್ರನನ್ನು ಅದರ ಕಕ್ಷೆಯಲ್ಲಿ ನಿಧಾನಗತಿಯಲ್ಲಿ ತಿರುಗುವಂತೆ ಮಾಡುತ್ತದೆ. ಮುಂಚಿನ ಪ್ರಕರಣದಲ್ಲಿ, ಕೋನೀಯ ಆವೇಗ ವರ್ಗಾವಣೆಯು ಹಿಂದುಮುಂದಾಗುತ್ತದೆ. ಆದ್ದರಿಂದ ಮುಖ್ಯಕಾಯದ ಕಕ್ಷೆಯ ಪರಿಭ್ರಮಣವು ವೇಗಪಡೆಯುತ್ತದೆ ಮತ್ತು ಉಪಗ್ರಹದ ಪರಿಭ್ರಮಣವು ಕ್ಷೀಣಿಸುತ್ತದೆ. ನಂತರದ ಪ್ರಕರಣದಲ್ಲಿ, ಕಕ್ಷೆಯ ಪರಿಭ್ರಮಣ ಮತ್ತು ಗ್ರಹದ ಸುತ್ತ ಪರಿಭ್ರಮಣದ ಕೋನೀಯ ಆವೇಗ ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳಿಂದ ಕೂಡಿರುತ್ತದೆ. ಆದ್ದರಿಂದ ವರ್ಗಾವಣೆಯು ಪ್ರತಿಯೊಂದರ ಗಾತ್ರವನ್ನು ಕುಗ್ಗಿಸುತ್ತದೆ[note ೪] ಎರಡೂ ಪ್ರಕರಣಗಳಲ್ಲಿ ಗುರುತ್ವದ ದ್ವಿಗ್ವೇಗಪಾತವು ಚಂದ್ರನನ್ನು ಮುಖ್ಯಗ್ರಹದತ್ತ ಸುರುಳಿಯಾಗಿ ಸುತ್ತುವಂತೆ ಮಾಡುತ್ತದೆ. ನಂತರ ಗುರುತ್ವಸೆಳೆತದ ಒತ್ತಡಗಳಿಂದ ಚೂರಾಗುತ್ತದೆ ಹಾಗೂ ಗ್ರಹದ ಉಂಗುರ ವ್ಯವಸ್ಥೆಯನ್ನು ಸೃಷ್ಟಿಸುತ್ತದೆ ಅಥವಾ ಗ್ರಹದ ಮೇಲ್ಮೈಗೆ ಅಥವಾ ವಾತಾವರಣಕ್ಕೆ ಘರ್ಷಿಸುತ್ತದೆ.

 ಇಂತಹ ಗತಿಯು ಮಂಗಳನ ಚಂದ್ರರ ಫೋಬಾಸ್‌ಗಳಿಗೆ(30ರಿಂದ 50ದಶಲಕ್ಷ ವರ್ಷಗಳಲ್ಲಿ),[೮೩] ನೆಪ್ಚೂನ್‌‌ಟ್ರೈಟಾನ್‌ಗೆ  ( 3.6 ಶತಕೋಟಿ ವರ್ಷಗಳಲ್ಲಿ),[೮೪] ಗುರುವಿನ ಮೆಟಿಸ್‌ಮತ್ತು ಅಡ್ರಾಸ್ಟಿಯ‌ಕ್ಕೆ [೮೫] ಮತ್ತು ಯುರೇನಸ್ ಮತ್ತು ನೆಪ್ಚೂನ್‌ನ ಕನಿಷ್ಠ  16 ಸಣ್ಣ ಉಪಗ್ರಹ ಗಳಿಗೆ ಕಾದುಕೊಂಡಿದೆ. ಯುರೇನಸ್ ಡೆಸ್ಡೆಮೋನಾ ತನ್ನ ಒಂದು ನೆರೆಯ ಚಂದ್ರನ ಜತೆ ಡಿಕ್ಕಿಯನ್ನು ಕೂಡ ಹೊಡೆಯಬಹುದು.[೮೬]

ಮೂರನೇ ಸಾಧ್ಯತೆಯು ಮುಖ್ಯಗ್ರಹ ಮತ್ತು ಚಂದ್ರ ಪರಸ್ಪರ ಟೈಡಲಿ ಲಾಕ್ಡ್(ಪರಸ್ಪರ ಒಂದೇ ಬದಿ ಮುಖ) ಆಗಿರುವುದು. ಆಗ ಗುರುತ್ವಬಲದ ವಿರೂಪ ನೇರವಾಗಿ ಚಂದ್ರನ ಕೆಳಗಿರುತ್ತದೆ. ಕೋನೀಯ ಆವೇಗದ ವರ್ಗಾವಣೆ ಇರುವುದಿಲ್ಲ ಮತ್ತು ಪರಿಭ್ರಮಣೆ ಅವಧಿಯು ಬದಲಾಗುವುದಿಲ್ಲ.

 ಈ ರೀತಿಯ ವಿನ್ಯಾಸಕ್ಕೆ ಪ್ಲೂಟೊ ಮತ್ತು ಚಾರಾನ್ ಉದಾಹರಣೆಯಾಗಿದೆ.[೮೭]

2004ರಲ್ಲಿ ಕ್ಯಾಸಿನಿ ಹೈಜೆನ್ಸ್ ಬಾಹ್ಯಾಕಾಶ ನೌಕೆಯ ಆಗಮನಕ್ಕೆ ಮುಂಚಿತವಾಗಿ ಶನಿಯ ಉಂಗುರಗಳು ಸೌರವ್ಯೂಹಕ್ಕಿಂತ ಕಿರಿದಾಗಿದ್ದು, ಇನ್ನೂ 300ದಶಲಕ್ಷ ವರ್ಷಗಳ ಕಾಲ ಉಳಿಯುವುದಿಲ್ಲವೆಂದು ನಿರೀಕ್ಷಿಸಲಾಗಿತ್ತು. ಶನಿಯ ಚಂದ್ರರ ಗುರುತ್ವ ಸಂಪರ್ಕಗಳು ಉಂಗುರಗಳ ಹೊರತುದಿಯನ್ನು ಕ್ರಮೇಣ ಗ್ರಹದತ್ತ ನೂಕುತ್ತದೆ. ಶನಿಯ ಗುರುತ್ವ ಮತ್ತು ಉಲ್ಕೆಗಳ ಉಜ್ಜುವಿಕೆಯಿಂದ ಶನಿ ಗ್ರಹವು ಸೌಂದರ್ಯ ಕಳೆದುಕೊಳ್ಳುತ್ತದೆ ಎಂದು ನಿರೀಕ್ಷಿಸಲಾಗಿತ್ತು.[೮೮] ಆದಾಗ್ಯೂ, ಕ್ಯಾಸಿನಿ ಯಾತ್ರೆಯ ಅಂಕಿಅಂಶಗಳು ತಮ್ಮ ಮುಂಚಿನ ಅಭಿಪ್ರಾಯವನ್ನು ಪರಿಷ್ಕರಿಸಲು ದಾರಿ ಕಲ್ಪಿಸಿತು. ಸುಮಾರು 10 ಕಿಮೀ ಅಗಲದ ವಸ್ತುವಿನ ಹಿಮಪದರಗಳು ಮತ್ತೆ ಮತ್ತೆ ಒಡೆದುಹೋಗಿ ಪುನಃ ಕೂಡಿಕೊಂಡು, ಉಂಗುರಗಳನ್ನು ಹೊಸದಾಗಿ ಇಡುತ್ತದೆ. ಇತರೆ ಅನಿಲ ದೈತ್ಯಗಳಿಗಿಂತ ಶನಿಯ ಉಂಗುರಗಳು ಹೆಚ್ಚು ಬೃಹದಾಕಾರವಾಗಿದೆ. ಈ ದೊಡ್ಡ ದ್ರವ್ಯರಾಶಿಯು ಶನಿಗ್ರಹವು 4.5ವರ್ಷಗಳ ಹಿಂದೆ ರೂಪುಗೊಂಡಾಗಿನಿಂದ ಅದರ ಉಂಗುರಗಳನ್ನು ರಕ್ಷಿಸಿರಬಹುದು ಹಾಗು ಶತಕೋಟಿ ವರ್ಷಗಳ ಕಾಲ ಅದನ್ನು ರಕ್ಷಿಸುವ ಸಂಭವವಿದೆ.[೮೯]

ಸೂರ್ಯ ಮತ್ತು ಗ್ರಹಗಳ ಪರಿಸರಗಳು[ಬದಲಾಯಿಸಿ]

See also: Stellar evolutionಮತ್ತು Future of the Earth

ಸುದೀರ್ಘಾವಧಿಯಲ್ಲಿ, ಕಾಲವು ಸರಿದಂತೆ ಸೂರ್ಯನಲ್ಲಿ ಪರಿವರ್ತನೆಗಳಾಗುವ ಮೂಲಕ ಸೌರವ್ಯೂಹದಲ್ಲಿ ಮಹಾ ಪರಿವರ್ತನೆಗಳಾಗಲಿವೆ. ಸೂರ್ಯನು ಜಲಜನಕದ ಇಂಧನದ ಸರಬರಾಜಿನ ಮೂಲಕ ಉರಿಯುತ್ತಿದ್ದಂತೆ, ಅದು ತೀವ್ರ ಶಾಖವನ್ನು ಉತ್ಪಾದಿಸಿ,ಉಳಿದ ಇಂಧನವನ್ನು ಇನ್ನಷ್ಟು ವೇಗವಾಗಿ ಉರಿಸುತ್ತದೆ. ಇದರ ಫಲವಾಗಿ, ಸೂರ್ಯನು ಪ್ರತಿ 1.1 ಶತಕೋಟಿ ವರ್ಷಗಳಲ್ಲಿ ಶೇಕಡ 10ರ ಪ್ರಮಾಣದಲ್ಲಿ ಪ್ರಕಾಶಮಾನವಾಗುತ್ತದೆ.[೯೦] ಒಂದು ಶತಕೋಟಿ ವರ್ಷಗಳ ಕಾಲಾವಧಿಯಲ್ಲಿ, ಸೂರ್ಯನ ವಿಕಿರಣದ ಉತ್ಪಾದನೆ ಹೆಚ್ಚುತ್ತಿದ್ದಂತೆ, ಅದರ ವಾಸಯೋಗ್ಯ ವಲಯವು ಹೊರಭಾಗಕ್ಕೆ ಚಲಿಸುತ್ತದೆ. ಇದರಿಂದ ಭೂಮಿಯ ಮೇಲ್ಮೈ ತೀವ್ರ ತಾಪಮಾನಕ್ಕೆ ತಿರುಗಿ, ದ್ರವ ಸ್ಥಿತಿಯ ನೀರು ಅಲ್ಲಿ ಸ್ವಾಭಾವಿಕವಾಗಿ ಉಪಸ್ಥಿತವಿರಲು ಸಾಧ್ಯವಾಗುವುದಿಲ್ಲ. ಈ ಹಂತದಲ್ಲಿ ಭೂಮಿಯ ಮೇಲಿನ ಎಲ್ಲ ಜೀವರಾಶಿಗಳು ನಶಿಸುತ್ತವೆ.[೯೧] ಸಾಗರಗಳಿಂದ ಪ್ರಬಲ ಹಸಿರುಮನೆ ಅನಿಲವಾದ ನೀರಿನ ಆವಿಯಾಗುವಿಕೆಯು ತಾಪಮಾನ ಹೆಚ್ಚಳ ಮಾಡುತ್ತದೆ. ಇದರಿಂದ ಶೀಘ್ರದಲ್ಲೇ ಭೂಮಿಯಲ್ಲಿ ಎಲ್ಲ ಜೀವಸಂಕುಲಗಳ ಅಂತ್ಯ ಸಂಭವಿಸುತ್ತದೆ.[೯೨] ಈ ಸಂದರ್ಭದಲ್ಲಿ, ಮಂಗಳನ ಮೇಲ್ಮೈ ತಾಪಮಾನ ಕ್ರಮೇಣ ಹೆಚ್ಚುತ್ತಿದ್ದಂತೆ, ಮೇಲ್ಮೈ ಮಣ್ಣಿನಲ್ಲಿ ಹೆಪ್ಪುಗಟ್ಟಿದ ಇಂಗಾಲದ ಡೈಆಕ್ಸೈಡ್ ಮತ್ತು ನೀರು ವಾತಾವರಣಕ್ಕೆ ಬಿಡುಗಡೆಯಾಗುತ್ತದೆ. ಇದರಿಂದ ಹಸಿರುಮನೆ ಪರಿಣಾಮ ಸೃಷ್ಟಿಯಾಗಿ, ಗ್ರಹದಲ್ಲಿ ಶಾಖ ಉಂಟುಮಾಡಿ ಭೂಮಿಗೆ ಸಮಾನವಾದ ಪರಿಸ್ಥಿತಿಗಳನ್ನು ಸಾಧಿಸುತ್ತದೆ ಹಾಗು ಜೀವಿಗಳಿಗೆ ಭವಿಷ್ಯದ ಸಂಭವನೀಯ ನೆಲೆಯಾಗುತ್ತದೆ.[೯೩] ಈಗಿನಿಂದ 3 .5ಶತಕೋಟಿ ವರ್ಷಗಳಲ್ಲಿ, ಭೂಮಿಯ ಮೇಲ್ಮೈ ಸ್ಥಿತಿಗತಿಗಳು ಇಂದಿನ ಶುಕ್ರಗ್ರಹದ ಸ್ಥಿತಿಗತಿಗೆ ಸಮನಾಗಿರುತ್ತದೆ[೯೦].

ಮುಂದಿನ ಕೆಂಪು ದೈತ್ಯನ ಅಂದಾಜು ಗಾತ್ರಕ್ಕೆ ಹೋಲಿಸಿದರೆ ಈಗಿರುವ ಸೂರ್ಯನ ಗಾತ್ರ(ಒಳಭಾಗದ ಚಿತ್ರ)

ಇಂದಿನಿಂದ ಸುಮಾರು 5.4ಶತಕೋಟಿ ವರ್ಷಗಳಲ್ಲಿ, ಸೂರ್ಯನ ಮಧ್ಯಭಾಗ(ತಿರುಳು)ತೀವ್ರ ತಾಪಮಾನದಿಂದ ಕೂಡಿ,ಅದರ ಸುತ್ತಲಿನ ಹೊರಹೊದಿಕೆಯಲ್ಲಿ ಜಲಜನಕದ ಸಮ್ಮಿಳನಕ್ಕೆ ಪ್ರಚೋದನೆಯಾಗುತ್ತದೆ.[೯೧] ಇದು ಸೂರ್ಯನ ಹೊರಕವಚಗಳು ಹೆಚ್ಚು ವಿಸ್ತರಿಸಿ, ಕೆಂಪು ದೈತ್ಯ ಎಂಬ ಹಂತವನ್ನು ಪ್ರವೇಶಿಸುತ್ತದೆ.[೯೪][೯೫] ಸುಮಾರು 7 .5ಶತಕೋಟಿ ವರ್ಷಗಳಲ್ಲಿ ಸೂರ್ಯನು ತನ್ನ ಪ್ರಸಕ್ತ ಗಾತ್ರಕ್ಕಿಂತ 256 ಪಟ್ಟು-1.2 AU ತ್ರಿಜ್ಯಕ್ಕೆ ವ್ಯಾಪಿಸಬಹುದು. ಕೆಂಪು ದೈತ್ಯದ ಶಾಖೆಯ ತುದಿಯಲ್ಲಿ ಮೇಲ್ಮೈಪ್ರದೇಶದ ವ್ಯಾಪಕ ಹೆಚ್ಚಳದಿಂದ,ಸೂರ್ಯನ ಮೇಲ್ಮೈ ಮತ್ತಷ್ಟು ತಂಪಾಗುತ್ತದೆ(ಸುಮಾರು 2600 K ) ಮತ್ತು ಅದರ ಪ್ರಕಾಶಮಾನತೆಯು ಇನ್ನಷ್ಟು ಹೆಚ್ಚಾಗಿ 2700 ಪ್ರಸಕ್ತ ಸೌರ ಪ್ರಕಾಶಮಾನತೆಗೆ ಮುಟ್ಟುತ್ತದೆ.

ಅದರ ಕೆಂಪು ದೈತ್ಯ ಜೀವಿತಾವಧಿಯ ಭಾಗದಲ್ಲಿ, ಸೂರ್ಯ ಬಲವಾದ ನಾಕ್ಷತ್ರಿಕ ಮಾರುತವನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ. ಅದು ಸೂರ್ಯನ ದ್ರವ್ಯರಾಶಿಯಲ್ಲಿ 33% ಹೊರ ಒಯ್ಯುತ್ತದೆ.[೯೧][೯೬][೯೭] ಈ ಸಂದರ್ಭದಲ್ಲಿ, ಶನಿಯ ಚಂದ್ರ ಟೈಟಾನ್ ಜೀವಸಂಕುಲಕ್ಕೆ ಪೂರಕವಾಗುವ ಮೇಲ್ಮೈ ತಾಪಮಾನಗಳನ್ನು ಸಾಧಿಸಲು ಸಾಧ್ಯವಾಗಬಹುದು.[೯೮][೯೯]

ಸೂರ್ಯನು ವಿಸ್ತರಣೆಯಾಗುತ್ತಿದ್ದಂತೆ, ಇದು ಬುಧ, ಮತ್ತು ಶುಕ್ರ ಗ್ರಹಗಳನ್ನು ಹೆಚ್ಚುಕಡಿಮೆ ನುಂಗಿಹಾಕುತ್ತದೆ.[೧೦೦] ಭೂಮಿಯ ಭವಿಷ್ಯ ಅಸ್ಪಷ್ಟವಾಗಿದ್ದು, ಭೂಮಿಯ ಪ್ರಸಕ್ತ ಕಕ್ಷೆಯನ್ನು ಸೂರ್ಯನು ಆವರಿಸಿದರೂ, ಸೂರ್ಯನ ದ್ರವ್ಯರಾಶಿ ನಷ್ಟವು(ಹೀಗೆ ದುರ್ಬಲ ಗುರುತ್ವ) ಗ್ರಹಗಳ ಕಕ್ಷೆಗಳನ್ನು ಇನ್ನಷ್ಟು ದೂರ ಚಲಿಸುವಂತೆ ಮಾಡುತ್ತದೆ.[೯೧] ಇದಿಷ್ಟೇ ಆಗಿದ್ದರೆ, ಶುಕ್ರ ಮತ್ತು ಭೂಮಿಯು ಬಹುಶಃ ಭಸ್ಮೀಕರಣದಿಂದ ತಪ್ಪಿಸಿಕೊಳ್ಳುತ್ತಿತ್ತು.[೯೬] ಆದರೆ ಸೂರ್ಯನ ದುರ್ಬಲ ಎಲ್ಲೆಯಾದ ಹೊರ ಕವಚದೊಂದಿಗೆ ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಪಾರಸ್ಪರಿಕ ಕ್ರಿಯೆಯ ಫಲವಾಗಿ ಭೂಮಿಯನ್ನು ನುಂಗಿಹಾಕುವ ಸಾಧ್ಯತೆಯಿದೆ.[೯೧]

ಕ್ರಮೇಣ,ಸೌರ ತಿರುಳಿನ ಸುತ್ತ ಹೊರಹೊದಿಕೆಯಲ್ಲಿ ಜಲಜನಕದ ಉರಿಯುವಿಕೆಯಿಂದ ತಿರುಳಿನ ದ್ರವ್ಯರಾಶಿಯನ್ನು ಅದು ಪ್ರಸ್ತುತ ಸೌರ ದ್ರವ್ಯರಾಶಿಯ ಸುಮಾರು 45%ಮುಟ್ಟುವವರೆಗೆ ಹೆಚ್ಚಿಸುತ್ತದೆ. ಈ ಹಂತದಲ್ಲಿ ಸಾಂದ್ರತೆ ಮತ್ತು ತಾಪಮಾನದಲ್ಲಿ ತೀವ್ರ ಹೆಚ್ಚಳವಾಗಿ ಇಂಗಾಲಕ್ಕೆ ಹೀಲಿಯಂನ ಸಮ್ಮಿಳನ ಆರಂಭವಾಗಿ, ಹೀಲಿಯಂ ಬೆಳಕು ಉಂಟಾಗುತ್ತದೆ. ಸೂರ್ಯನು ಅದರ ಪ್ರಸಕ್ತ(ಮುಖ್ಯ ಅನುಕ್ರಮ)ತ್ರಿಜ್ಯದ 250 ಪಟ್ಟಿನಿಂದ 11 ಪಟ್ಟುಗಳಿಗೆ ಇಳಿಯುತ್ತದೆ. ತರುವಾಯ ಅದರ ಪ್ರಕಾಶಮಾನತೆಯು ಅದರ ಪ್ರಸಕ್ತ ಮಟ್ಟದ 3000ದಿಂದ 54 ಮಟ್ಟಕ್ಕೆ ತಗ್ಗುತ್ತದೆ ಹಾಗು ಅದರ ಮೇಲ್ಮೈ ತಾಪಮಾನವು 4770Kಗೆ ಏರಿಕೆಯಾಗುತ್ತದೆ. ಸೂರ್ಯ ಮಟ್ಟಸವಾದ ಹಂತದ ನಕ್ಷತ್ರವಾಗಿ, ಅದರ ತಿರುಳಿನಲ್ಲಿ ಹೀಲಿಯಂನ್ನು ಸ್ಥಿರವಾದ ರೀತಿಯಲ್ಲಿ ಈಗ ಜಲಜನಕ ಉರಿಸುವ ರೀತಿ ಉರಿಸುತ್ತದೆ. ಹೀಲಿಯಂ ಸಮ್ಮಿಳನದ ಹಂತವು ಸುಮಾರು 100 ದಶಲಕ್ಷ ವರ್ಷಗಳ ಕಾಲಾವಧಿಯಾಗಿರುತ್ತದೆ. ತರುವಾಯ, ಇದು ಹೊರಪದರಗಳಲ್ಲಿ ಪುನಃ ಜಲಜನಕ ಮತ್ತು ಹೀಲಿಯಂ ಮೀಸಲುಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಎರಡನೇ ಬಾರಿ ವಿಸ್ತರಣೆಯಾಗುತ್ತದೆ ಹಾಗು ಅಸಂಪಾತ ದೈತ್ಯ ಶಾಖೆ ನಕ್ಷತ್ರ ಎಂಬ ಹೆಸರಿಗೆ ಪರಿವರ್ತನೆಯಾಗುತ್ತದೆ. ಇಲ್ಲಿ ಸೂರ್ಯನ ಪ್ರಕಾಶಮಾನತೆ ಪುನಃ ಹೆಚ್ಚುತ್ತದೆ ಮತ್ತು 2,090 ಪ್ರಕಾಶಮಾನತೆಗಳಿಗೆ ಮುಟ್ಟುತ್ತದೆ ಹಾಗೂ ಸುಮಾರು 3500 Kನಲ್ಲಿ ತಂಪಾಗುತ್ತದೆ.[೯೧] ಈ ಹಂತವು 30 ದಶಲಕ್ಷ ವರ್ಷಗಳ ಕಾಲಾವಧಿವರೆಗೆ ಉಳಿಯಬಹುದು. ಅದಾದ ನಂತರ ಮುಂದಿನ 100,000ವರ್ಷಗಳ ಕಾಲಾವಧಿಯಲ್ಲಿ ಸೂರ್ಯನ ಉಳಿದ ಹೊರ ಪದರಗಳು ಕಳಚಿಹೋಗುತ್ತವೆ ಹಾಗೂ ಬಾಹ್ಯಾಕಾಶಕ್ಕೆ ವ್ಯಾಪಕ ಬೌತವಸ್ತುಗಳನ್ನು ಚಿಮ್ಮಿಸುತ್ತದೆ ಮತ್ತು ವೃತ್ತಾಕಾರದ ಬೆಳಕಿನ ಗೃಹನೀಹಾರಿಕೆಯನ್ನು ರಚಿಸುತ್ತದೆ. ಚಿಮ್ಮಿದ ಬೌತವಸ್ತುಗಳು ಸೂರ್ಯನ ಪರಮಾಣು ಕ್ರಿಯೆಗಳಿಂದ ಉತ್ಪಾದಿತವಾದ ಹೀಲಿಯಂ ಮತ್ತು ಕಾರ್ಬನ್ ಹೊಂದಿರುತ್ತದೆ. ಇದು ನಕ್ಷತ್ರಗಳ ಮುಂದಿನ ತಲೆಮಾರುಗಳಿಗೆ ಭಾರೀ ಬೌತವಸ್ತುಗಳನ್ನು ಪೂರೈಸುವುದರೊಂದಿಗೆ ಅಂತರತಾರಾ ಮಾಧ್ಯಮವನ್ನು ಅಭಿವರ್ಧಿಸುತ್ತದೆ.[೧೦೧]

ಸೂರ್ಯನು ಬದಲಾಗುವುದಕ್ಕೆ ಸದೃಶವಾದ ಗ್ರಹನೀಹಾರಿಕೆಯಾದ ಉಂಗುರ ನೀಹಾರಿಕೆ.
ಇದೊಂದು ಸೂಪರ್‍‌ನೋವಾತರದಲ್ಲಿರದ ಶಾಂತಿಯುತ ವಿದ್ಯಮಾನವಾಗಿರುತ್ತದೆ. ವಿಕಾಸದ ಭಾಗವಾಗಿ ನಮ್ಮ ಸೂರ್ಯನು ಅದಕ್ಕೆ ಒಳಗಾಗಲು ತೀರ ಚಿಕ್ಕದಾಗಿದೆ. ಈ ವಿದ್ಯಮಾನವನ್ನು ವೀಕ್ಷಿಸಲು ವೀಕ್ಷಕನಿದ್ದರೆ, ಸೌರಮಾರುತದ ವೇಗದಲ್ಲಿ ಅಪಾರ ಹೆಚ್ಚಳವನ್ನು ಕಾಣುತ್ತಾನೆ. ಆದರೆ ಗ್ರಹವನ್ನು ಸಂಪೂರ್ಣವಾಗಿ ನಾಶಮಾಡುವಷ್ಟಲ್ಲ. ಆದಾಗ್ಯೂ, ನಕ್ಷತ್ರದ ದ್ರವ್ಯರಾಶಿಯ ನಷ್ಟವು ಉಳಿದಿರುವ ಗ್ರಹಗಳ ಕಕ್ಷೆಗಳನ್ನು ಅಸ್ತವ್ಯಸ್ತಗೊಳಿಸುತ್ತದೆ. ಕೆಲವು ಡಿಕ್ಕಿಹೊಡೆಯುತ್ತವೆ, ಉಳಿದವು ಸೌರವ್ಯೂಹದಿಂದ ಹೊರಕ್ಕೆ ಚಿಮ್ಮುತ್ತವೆ ಮತ್ತು ಇನ್ನೂ ಕೆಲವು ಗುರುತ್ವ ಸಂಪರ್ಕಗಳಿಂದ ಚೂರಾಗುತ್ತವೆ.[೧೦೨] ಇದಾದ ನಂತರ, ಸೂರ್ಯನಲ್ಲಿ ಉಳಿದಿರುವುದು ಶ್ವೇತ ಕುಬ್ಜತಾರೆ ಮಾತ್ರ. ಇದೊಂದು ವಿಶೇಷ ಸಾಂದ್ರತೆಯ ಬೌತವಸ್ತುವಾಗಿದ್ದು, ಅದರ ಮೂಲ ದ್ರವ್ಯರಾಶಿಯ 54%ರಷ್ಟಿರುತ್ತದೆ ಹಾಗೂ ಭೂಮಿಯ ಗಾತ್ರದಲ್ಲಿರುತ್ತದೆ. ಆರಂಭದಲ್ಲಿ, ಈ ಶ್ವೇತಕುಬ್ಜತಾರೆ ಈಗಿರುವ ಸೂರ್ಯನಿಗಿಂತ 100 ಪಟ್ಟು ಹೆಚ್ಚು ಪ್ರಕಾಶಮಾನವಾಗಿರಬಹುದು. ಇದು ಸಂಪೂರ್ಣವಾಗಿ ಕುಸಿದ ಇಂಗಾಲ ಮತ್ತು ಆಮ್ಲಜನಕ ಹೊಂದಿರುತ್ತದೆ. ಆದರೆ ಈ ಬೌತವಸ್ತುಗಳನ್ನು ಸಂಯೋಜನೆ ಮಾಡುವಷ್ಟು ತಾಪಮಾನಗಳನ್ನು ಮುಟ್ಟುವುದಿಲ್ಲ. ಹೀಗೆ ಶ್ವೇತಕುಬ್ಜತಾರೆ ಕ್ರಮೇಣ ತಂಪಾಗಿ ಇನ್ನಷ್ಟು ಮಸುಕಾಗುತ್ತಾ ಹೋಗುತ್ತದೆ.[೧೦೩]

ಸೂರ್ಯನು ನಶಿಸುತ್ತಿದ್ದಂತೆ, ಗ್ರಹಗಳು, ಧೂಮಕೇತುಗಳು ಮತ್ತು ಕ್ಷುದ್ರಗ್ರಹಗಳು ಮುಂತಾದ ಪರಿಭ್ರಮಣ ಕಾಯಗಳ ಮೇಲೆ ಗುರುತ್ವ ಸೆಳೆತವು ದುರ್ಬಲಗೊಳ್ಳುತ್ತದೆ. ಎಲ್ಲ ಉಳಿದ ಗ್ರಹಗಳ ಕಕ್ಷೆಗಳು ವಿಸ್ತರಣೆಯಾಗುತ್ತದೆ. ಶುಕ್ರ, ಭೂಮಿ ಮತ್ತು ಮಂಗಳ ಇನ್ನೂ ಅಸ್ತಿತ್ವದಲ್ಲಿದ್ದರೆ, ಅವುಗಳ ಕಕ್ಷೆಗಳು ಸುಮಾರು 1.4 AU (210,000,000 km),1.9 AU (280,000,000 km) ಮತ್ತು 2.8 AU (420,000,000 km)ನಲ್ಲಿರುತ್ತವೆ. ಅವು ಮತ್ತು ಉಳಿದ ಗ್ರಹಗಳು ಕತ್ತಲೆಯ, ಕಡುಶೀತ ರಾಶಿಯಾಗುತ್ತದೆ ಮತ್ತು ಯಾವುದೇ ರೀತಿಯ ಜೀವ ಸ್ವರೂಪ ಇಲ್ಲವಾಗುತ್ತದೆ.[೯೬] ಅವು ತಮ್ಮ ನಕ್ಷತ್ರದ ಪರಿಭ್ರಮಣೆಯನ್ನು ಮುಂದುವರಿಸುತ್ತದೆ. ಸೂರ್ಯನಿಂದ ಹೆಚ್ಚಿದ ದೂರದಿಂದಾಗಿ ಹಾಗು ಸೂರ್ಯನ ಗುರುತ್ವ ಬಲದ ಕುಂಠಿತದಿಂದ ಅವುಗಳ ವೇಗ ತಗ್ಗುತ್ತದೆ. ಎರಡು ಶತಕೋಟಿ ವರ್ಷಗಳ ಬಳಿಕ, ಸೂರ್ಯನು 6000–8000K ವ್ಯಾಪ್ತಿಯಲ್ಲಿ ತಂಪಾದಾಗ, ಸೂರ್ಯನ ತಿರುಳಿನಲ್ಲಿರುವ ಇಂಧನ ಮತ್ತು ಆಮ್ಲಜನಕ ಹೆಪ್ಪುಗಟ್ಟುತ್ತದೆ. ಅದರ ಉಳಿದ ದ್ರವ್ಯರಾಶಿಯಲ್ಲಿ ಸುಮಾರು 90%ಗಿಂತ ಹೆಚ್ಚು ಸ್ಫಟಿಕದ ರಚನೆಯಲ್ಲಿ ರೂಪುಗೊಳ್ಳುತ್ತದೆ.[೧೦೪] ತರುವಾಯ, ಸಾವಿರ ಕೋಟಿಗೂ ಹೆಚ್ಚು ವರ್ಷಗಳ ಬಳಿಕ, ಸೂರ್ಯ ಅಂತಿಮವಾಗಿ ಪ್ರಕಾಶಿಸುವುದನ್ನು ನಿಲ್ಲಿಸಿ, ಕಪ್ಪು ಬಣ್ಣದ ಕುಬ್ಜತಾರೆಯಾಗಿ ಪರಿವರ್ತನೆಯಾಗುತ್ತದೆ.[೧೦೫]

ಗ್ಯಾಲಕ್ಸಿಯ ಪರಸ್ಪರ ಕ್ರಿಯೆ[ಬದಲಾಯಿಸಿ]

ನಮ್ಮ ಗ್ಯಾಲಕ್ಸಿಯಲ್ಲಿ ಸೌರವ್ಯೂಹ ಉಪಸ್ಥಿತವಿರುವ ಸ್ಥಳ.

ಸೌರವ್ಯೂಹವು ಗ್ಯಾಲಕ್ಸಿ ಕೇಂದ್ರದಿಂದ ಅಂದಾಜು 30,000 ಜ್ಯೋತಿರ್ವರ್ಷಗಳಲ್ಲಿ ಕ್ಷೀರಪಥ ಗ್ಯಾಲಕ್ಸಿಯಲ್ಲಿ ವೃತ್ತಾಕಾರದ ಕಕ್ಷೆಯಲ್ಲಿ ಏಕಾಂಗಿಯಾಗಿ ಪ್ರಯಾಣಿಸುತ್ತದೆ. ಅದರ ವೇಗವು ಸುಮಾರು 220ಕಿಮೀಗಳು. ಗ್ಯಾಲಕ್ಸಿ ಕೇಂದ್ರದ ಸುತ್ತ ಒಂದು ಪರಿಭ್ರಮಣೆಯನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು ಸೌರವ್ಯೂಹಕ್ಕೆ ಅಗತ್ಯವಾದ ಅವಧಿಯಾದ ಗ್ಯಾಲಕ್ಸಿ ವರ್ಷವು 220 -250ದಶಲಕ್ಷ ವರ್ಷಗಳ ವ್ಯಾಪ್ತಿಯಲ್ಲಿರುತ್ತದೆ. ಅದರ ರಚನೆಯಾದಾಗಿನಿಂದ, ಸೌರವ್ಯೂಹವು ಇಂತಹ 20ಪರಿಭ್ರಮಣೆಗಳನ್ನು ಪೂರ್ಣಗೊಳಿಸಿದೆ.[೧೦೬]

ಗ್ಯಾಲಕ್ಸಿಯಲ್ಲಿ ಸೌರವ್ಯೂಹದ ಪಥವು ಭೂಮಿಯ ಪಳೆಯುಳಿಕೆ ದಾಖಲೆಯಲ್ಲಿ ಕಂಡುಬರುವ ಸಮೂಹ ಅಳಿವಿನ ನಿಯತಕಾಲಿಕತೆಯ ಅಂಶವಾಗಿದೆ ಎಂದು ಅನೇಕ ವಿಜ್ಞಾನಿಗಳು ಊಹಿಸಿದ್ದಾರೆ.

ಗ್ಯಾಲಕ್ಸಿಯ ಕೇಂದ್ರವನ್ನು ಸೂರ್ಯನು ಲಂಬೀಯವಾಗಿ ಪರಿಭ್ರಮಣೆಗಳನ್ನು ಮಾಡುವ ಸಂದರ್ಭದಲ್ಲಿ ಇದು ನಿಯಮಿತವಾಗಿ ಗ್ಯಾಲಕ್ಸಿಯ ಸಮತಲದಲ್ಲಿ ಹಾದುಹೋಗುತ್ತದೆ ಎಂದು ಒಂದು ಊಹೆ ಅಂದಾಜು ಮಾಡುತ್ತದೆ. ಸೂರ್ಯನ ಕಕ್ಷೆಯು ಗ್ಯಾಲಕ್ಸಿಯ ತಟ್ಟೆಯ ಹೊರಗಿದ್ದರೆ, ಗ್ಯಾಲಕ್ಸಿ ಟೈಡ್ (ಗುರುತ್ವಬಲದ ಆನುಷಂಗಿಕ ಪರಿಣಾಮ)ಪ್ರಭಾವವು ದುರ್ಬಲವಾಗಿರುತ್ತದೆ. ಸೂರ್ಯ ಪ್ರತಿ ೨೦-25ದಶಲಕ್ಷ ವರ್ಷಗಳಲ್ಲಿ ಗ್ಯಾಲಕ್ಸಿ ತಟ್ಟೆಯನ್ನು ಮರುಪ್ರವೇಶಿಸಿದಾಗ, ಇದು ಅತೀ ಬಲವಾದ ಡಿಸ್ಕ್ ಗುರುತ್ವಬಲದ ಪ್ರಭಾವಕ್ಕೆ ಒಳಗಾಗುತ್ತದೆ. ಗಣಿತೀಯ ಮಾದರಿಗಳ ಪ್ರಕಾರ, ಇದು 4 ಅಂಶಗಳಿಂದ ಸೌರವ್ಯೂಹದೊಳಗೆ ಊವರ್ಟ್ ಮೋಡದ ಧೂಮಕೇತುಗಳ ಹರಿವನ್ನು ಹೆಚ್ಚಿಸುತ್ತದೆ. ಇದರಿಂದ ವಿನಾಶಕಾರಿ ಅಪ್ಪಳಿಸುವಿಕೆ ಸಂಭವನೀಯತೆಯನ್ನು ಅತಿಯಾಗಿ ಹೆಚ್ಚಿಸುತ್ತದೆ.[೧೦೭]

ಆದಾಗ್ಯೂ, ಸೂರ್ಯನು ಪ್ರಸಕ್ತ ಗ್ಯಾಲಕ್ಸಿ ಸಮತಲಕ್ಕೆ ಸಮೀಪದಲ್ಲಿದ್ದು, ಕೊನೆಯ ಮಹಾ ಅಳಿವಿನ ವಿದ್ಯಮಾನವು 15 ದಶಲಕ್ಷ ವರ್ಷಗಳ ಕೆಳಗೆ ಸಂಭವಿಸಿದೆಯೆಂದು ಕೆಲವರು ವಾದಿಸುತ್ತಾರೆ. ಆದ್ದರಿಂದ ಸೂರ್ಯನ ಲಂಬೀಯ ಸ್ಥಾನವು ಇಂತಹ ಆವರ್ತಕ ಅಳಿವುಗಳ ಬಗ್ಗೆ ವಿವರಣೆ ನೀಡುವುದಿಲ್ಲ. ಬದಲಿಗೆ ಸೂರ್ಯ ಗ್ಯಾಲಕ್ಸಿಯ ಸುರುಳಿ(ಸ್ಪೈರಲ್ ಆರ್ಮ್ಸ್) ಹಾದುಹೋದಾಗ ಈ ಅಳಿವುಗಳು ಸಂಭವಿಸುತ್ತವೆ. ಗ್ಯಾಲಕ್ಸಿಯ ಸುರುಳಿಯು ಅನೇಕ ಸಂಖ್ಯೆಯ ಆಣ್ವಿಕ ಮೋಡಗಳಿಗೆ ನೆಲೆಯಾಗಿದೆಯಲ್ಲದೇ, ಅದರ ಗುರುತ್ವಬಲವು ಊವರ್ಟ್ ಮೋಡವನ್ನು ವಿಕೃತಗೊಳಿಸಬಹುದು. ಅಲ್ಲದೇ ಪ್ರಕಾಶಮಾನ ನೀಲಿ ದೈತ್ಯ ನಕ್ಷತ್ರಗಳ ಹೆಚ್ಚಿನ ಸಾಂದ್ರತೆಗಳನ್ನು ವಿರೂಪಗೊಳಿಸಬಹುದು. ನೀಲಿ ದೈತ್ಯ ನಕ್ಷತ್ರಗಳು ಅಲ್ಪಾವಧಿಗಳಲ್ಲಿ ಜೀವಿಸಿ ನಂತರ ಸೂಪರ್‌ನೋವಾ ರೀತಿಯಲ್ಲಿ ಪ್ರಬಲವಾಗಿ ಸ್ಫೋಟಿಸಬಹುದು.[೧೦೮]

ಗ್ಯಾಲಕ್ಸಿಯ ಡಿಕ್ಕಿ ಮತ್ತು ಗ್ರಹದ ಸ್ಫೋಟನ[ಬದಲಾಯಿಸಿ]

ಬ್ರಹ್ಮಾಂಡದಲ್ಲಿ ಬಹುತೇಕ ಗ್ಯಾಲಕ್ಸಿಗಳು ಕ್ಷೀರಪಥದಿಂದ ದೂರ ಹೋಗುತ್ತಿದ್ದರೆ, ಗ್ಯಾಲಕ್ಸಿಗಳ ಸ್ಥಳೀಯ ಗುಂಪಿನ ದೊಡ್ಡ ಅಂಗವಾದ ಆಂಡ್ರೋಮಿಡಾ ಗ್ಯಾಲಕ್ಸಿ ಪ್ರತಿ ಸೆಕೆಂಡಿಗೆ 120 ಕಿಮೀ ಸಮೀಪಿಸುತ್ತಿದೆ.[೧೦೯] 2 ಶತಕೋಟಿ ವರ್ಷಗಳಲ್ಲಿ ಆಂಡ್ರೋಮಿಡಾ ಮತ್ತು ಕ್ಷೀರಪಥ ಡಿಕ್ಕಿಹೊಡೆದು, ಎರಡೂ ಆಕಾರ ಕಳೆದುಕೊಳ್ಳುತ್ತವೆ. ಟೈಡಲ್(ಗುರುತ್ವ) ಶಕ್ತಿಗಳು ಅವುಗಳ ಹೊರ ಅಂಗಗಳನ್ನು ವ್ಯಾಪಕ ಟೈಡಲ್ ಬಾಲಗಳಾಗಿ ವಿಕಾರಗೊಳಿಸುತ್ತದೆ. ಇಂತಹ ಆರಂಭಿಕ ಸ್ಫೋಟನ ಸಂಭವಿಸಿದರೆ, ಸೌರ ವ್ಯೂಹವು ಹೊರಭಾಗಕ್ಕೆ ಎಳೆಯಲ್ಪಟ್ಟು, ಕ್ಷೀರಪಥದ ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಬಾಲಕ್ಕೆ ತಲುಪುವ 12% ಅವಕಾಶವಿರುತ್ತದೆ ಹಾಗು ಅದು ಆಂಡ್ರೋಮಿಡಾದ ಗುರುತ್ವಬಲದ ಸೆಳೆತಕ್ಕೆ ಒಳಗಾಗಿ ಆ ಗ್ಯಾಲಕ್ಸಿಯ ಭಾಗವಾಗುವ 3% ಅವಕಾಶವಿರುತ್ತದೆ ಎಂದು ಖಗೋಳವಿಜ್ಞಾನಿಗಳು ಲೆಕ್ಕಾಚಾರ ಹಾಕಿದ್ದಾರೆ.[೧೦೯] ಮತ್ತಷ್ಟು ಕೋನೀಯ ಹೊಡೆತಗಳ ಸರಣಿಯ ನಂತರ, ಸೌರವ್ಯೂಹದ ಉಚ್ಚಾಟನೆಯು 30%ಏರಿಕೆಯಾಗಿ,[೧೧೦] ಗ್ಯಾಲಕ್ಸಿಗಳ ಬೃಹತ್ ಕಪ್ಪು ರಂಧ್ರಗಳು ವಿಲೀನವಾಗುತ್ತವೆ.

ತರುವಾಯ,ಸುಮಾರು 7 ಶತಕೋಟಿ ವರ್ಷಗಳಲ್ಲಿ, ಕ್ಷೀರಪಥ ಮತ್ತು ಆಂಡ್ರೋಮಿಡಾ ವಿಲೀನವನ್ನು ಪೂರ್ಣಗೊಳಿಸಿ ದೈತ್ಯ ಅಂಡಾಕಾರದ ಗ್ಯಾಲಕ್ಸಿಯಾಗುತ್ತದೆ. ಈ ವಿಲೀನದ ಸಂದರ್ಭದಲ್ಲಿ, ಸಾಕಷ್ಟು ಅನಿಲದ ನಿಕ್ಷೇಪವಿದ್ದರೆ, ಹೆಚ್ಚಿದ ಗುರುತ್ವವು ಅನಿಲವನ್ನು ಅಂಡಾಕಾರದ ಗ್ಯಾಲಕ್ಸಿಯ ಮಧ್ಯಭಾಗಕ್ಕೆ ತಳ್ಳುತ್ತದೆ. ಇದು ಅಲ್ಪಕಾಲೀನ ತೀವ್ರ ನಕ್ಷತ್ರ ರಚನೆಯಾದ ಸ್ಟಾರ್‌ಬರ್ಸ್ಟ್‌ಗೆ ದಾರಿ ಕಲ್ಪಿಸುತ್ತದೆ.[೧೦೯] ಇದರ ಜತೆಗೆ ಗುರುತ್ವ ಆಕರ್ಷಣೆಯ ಅನಿಲವು ನೂತನವಾಗಿ ರಚನೆಯಾದ ಕಪ್ಪು ರಂಧ್ರವನ್ನು ಪುಷ್ಟಿಗೊಳಿಸಿ, ಸಕ್ರಿಯ ಗ್ಯಾಲಕ್ಸಿಯ ಪರಮಾಣು ಬೀಜವಾಗುತ್ತದೆ. ಈ ಪರಸ್ಪರ ಕ್ರಿಯೆಯ ಬಲವು ಸೌರವ್ಯೂಹವನ್ನು ಹೊಸ ಗ್ಯಾಲಕ್ಸಿಯ ಹೊರ ಬೆಳಕಿನ ವೃತ್ತಕ್ಕೆ ದೂಡುತ್ತದೆ ಹಾಗು ಈ ಡಿಕ್ಕಿಗಳ ವಿಕಿರಣದಿಂದ ಹಾನಿಯಾಗದಂತೆ ಉಳಿಸುತ್ತದೆ.[೧೦೯][೧೧೦]

ಈ ಡಿಕ್ಕಿಗಳು ಸೌರವ್ಯೂಹದಲ್ಲಿ ಗ್ರಹಗಳ ಕಕ್ಷೆಗಳಿಗೆ ವಿಚ್ಛಿದ್ರಕಾರಕವಾಗಿದೆ ಎನ್ನುವುದು ಸಾಮಾನ್ಯ ತಪ್ಪು ಪರಿಕಲ್ಪನೆಯಾಗಿದೆ. ಹಾದುಹೋಗುವ ನಕ್ಷತ್ರಗಳ ಗುರುತ್ವವು ಗ್ರಹಗಳನ್ನು ಅಂತರತಾರಾ ಪ್ರದೇಶಕ್ಕೆ ಬೇರ್ಪಡಿಸಬಹುದು ಎನ್ನುವುದು ನಿಜವಾಗಿದ್ದರೂ, ನಕ್ಷತ್ರಗಳ ನಡುವೆ ದೊಡ್ಡ ಅಂತರಗಳಿದ್ದು, ಕ್ಷೀರಪಥ ಮತ್ತು ಆಂಡ್ರೋಮಿಡಾ ಡಿಕ್ಕಿಯಿಂದ ಪ್ರತ್ಯೇಕ ನಕ್ಷತ್ರ ವ್ಯವಸ್ಥೆಗೆ ಉಂಟಾಗುವ ಒಡಕು ಗಣನೆಗೆ ಬಾರದ್ದಾಗಿದೆ. ಒಟ್ಟಾರೆಯಾಗಿ ಈ ವಿದ್ಯಮಾನಗಳಿಂದ ಸೌರವ್ಯೂಹಕ್ಕೆ ಪರಿಣಾಮ ಉಂಟಾದರೂ, ಸೂರ್ಯ ಮತ್ತು ಗ್ರಹಗಳಿಗೆ ತೊಂದರೆ ಉಂಟಾಗುವ ನಿರೀಕ್ಷೆಯಿಲ್ಲ.[೧೧೧]

ಆದಾಗ್ಯೂ, ಕಾಲಾವಧಿ ಮೀರಿ ನಕ್ಷತ್ರದ ಜತೆ ಡಿಕ್ಕಿಯಾಗುವ ಸಂಚಿತ ಸಂಭವನೀಯತೆ ಹೆಚ್ಚುತ್ತದೆ ಮತ್ತು ಗ್ರಹಗಳ ಸ್ಫೋಟನ ಅನಿವಾರ್ಯವಾಗುತ್ತದೆ. ಬ್ರಹ್ಮಾಂಡದ ಅಂತ್ಯದಲ್ಲಿ ಬಿಗ್ ಕ್ರಂಚ್ ಅಥವಾ ಬಿಗ್ ರಿಪ್(ಸೌರವ್ಯೂಹದ ಅಂತಿಮ ಗತಿ) ವಿದ್ಯಮಾನಗಳು ಸಂಭವಿಸುವುದಿಲ್ಲ ಎಂದು ಭಾವಿಸಿದರೂ, 1 ಕ್ವಾಡ್ರಿಲಿಯನ್(1015) ವರ್ಷಗಳಲ್ಲಿ ಹಾದುಹೋಗುವ ನಕ್ಷತ್ರಗಳ ಗುರುತ್ವಬಲವು ಮೃತ ಸೂರ್ಯನ ಇನ್ನುಳಿದ ಗ್ರಹಗಳನ್ನು ಸಂಪೂರ್ಣವಾಗಿ ಕಳಚುತ್ತವೆ ಎಂದು ಲೆಕ್ಕಾಚಾರಗಳು ಸೂಚಿಸುತ್ತವೆ. ಈ ಅಂಶವು ಸೌರವ್ಯೂಹದ ಅಂತ್ಯದ ಕುರುಹಾಗಿದೆ. ಸೂರ್ಯ ಮತ್ತು ಗ್ರಹಗಳು ಉಳಿದುಕೊಂಡರೂ, ಸೌರವ್ಯೂಹ ಯಾವುದೇ ಅರ್ಥಪೂರ್ಣ ಜ್ಞಾನದಲ್ಲಿ ಅಸ್ತಿತ್ವ ಕಳೆದುಕೊಳ್ಳುತ್ತದೆ.[೩]

ಕಾಲಗಣನೆಯ ಶಾಸ್ತ್ರ[ಬದಲಾಯಿಸಿ]

Projected timeline of the Sun's life.

ಸೌರವ್ಯೂಹದ ರಚನೆಗೆ ಕಾಲಾವಧಿಯನ್ನು ರೇಡಿಯೊಮಿಟ್ರಿಕ್ ಡೇಟಿಂಗ್(ವಿಕಿರಣಶೀಲ ಕಾಲಗಣನೆ) ಬಳಸಿ ನಿರ್ಧರಿಸಲಾಗಿದೆ. ವಿಜ್ಞಾನಿಗಳು ಸೌರವ್ಯೂಹವು 4.6ಶತಕೋಟಿ ವರ್ಷಗಳಷ್ಟು ಹಿಂದಿನದೆಂದು ಅಂದಾಜು ಮಾಡಿದ್ದಾರೆ. ಭೂಮಿಯಲ್ಲಿ ಅತೀ ಪ್ರಾಚೀನ ಖನಿಜ ಕಣಗಳು ಅಂದಾಜು 4 .4ಶತಕೋಟಿ ವರ್ಷಗಳ ಹಿಂದಿನದ್ದಾಗಿದೆ.[೧೧೨] ಇಷ್ಟೊಂದು ಹಳೆಯ ಕಲ್ಲುಗಳು ಅಪರೂಪವಾಗಿದ್ದು, ಭೂಮಿಯ ಮೇಲ್ಮೈ ಸತತವಾಗಿ ಸವೆತ,ಜ್ವಾಲಾಮುಖಿ ಚಟುವಟಿಕೆಗಳು ಮತ್ತು ಭೂತಟ್ಟೆ ಹೊರಪದರದ ವಿರೂಪಗಳಿಂದ ಮರುರೂಪ ಪಡೆದಿದೆ. ಸೌರವ್ಯೂಹದ ಕಾಲಮಾನವನ್ನು ಅಂದಾಜು ಮಾಡಲು ವಿಜ್ಞಾನಿಗಳು ಉಲ್ಕೆಗಳನ್ನು ಬಳಸಿಕೊಳ್ಳುತ್ತಾರೆ. ಸೌರ ನೀಹಾರಿಕೆಯ ಪೂರ್ವಕಾಲದ ಸಲಿಲೀಕರಣ(ಕಂಡನ್ಸೇಷನ್)ದಿಂದ ಇದು ರಚನೆಯಾಗಿದೆ. ಬಹುಮಟ್ಟಿಗೆ ಎಲ್ಲ ಉಲ್ಕೆಗಳು(ನೋಡಿ ಕ್ಯಾನ್ಯಾನ್ ಡಯಬ್ಲೊ ಉಲ್ಕೆ)4 .6ಶತಕೋಟಿ ವರ್ಷಗಳ ಕಾಲಮಾನದ್ದೆಂದು ಪತ್ತೆಯಾಗಿದೆ. ಇದು ಸೌರವ್ಯೂಹವು ಇದೇ ಕಾಲಮಾನದ್ದಾಗಿರಬಹುದೆಂದು ಸೂಚಿಸುತ್ತದೆ.[೧೧೩]

ಉಳಿದ ನಕ್ಷತ್ರಗಳ ಸುತ್ತಲಿರುವ ತಟ್ಟೆಗಳು ಸೌರವ್ಯೂಹದ ರಚನೆಯ ಕಾಲಮಾನವನ್ನು ಸ್ಥಿರಪಡಿಸಲು ಸಾಕಷ್ಟು ಆಧಾರ ಒದಗಿಸಿವೆ. ಒಂದು ಮತ್ತು ಮೂರು ದಶಲಕ್ಷ ವರ್ಷಗಳಷ್ಟು ಕಾಲಮಾನದ ನಡುವೆ ಇರುವ ನಕ್ಷತ್ರಗಳು ಅನಿಲದ ಸಮೃದ್ಧಿಯಾದ ತಟ್ಟೆಗಳನ್ನು ಹೊಂದಿದ್ದರೆ, 10 ದಶಲಕ್ಷ ವರ್ಷಗಳಷ್ಟು ಹಳೆಯದಾದ ನಕ್ಷತ್ರಗಳ ಸುತ್ತಲೂ ಇರುವ ತಟ್ಟೆಗಳಲ್ಲಿ ಕಡಿಮೆ ಅನಿಲ ಅಥವಾ ಅನಿಲದ ಅನುಪಸ್ಥಿತಿ ಇರುತ್ತದೆ. ಇದು ಅನಿಲ ದೈತ್ಯ ಗ್ರಹಗಳು ಅನಿಲದ ರಚನೆಯನ್ನು ನಿಲ್ಲಿಸಿರುತ್ತದೆಂದು ಸೂಚಿಸುತ್ತದೆ.[೨೯]

ಸೌರವ್ಯೂಹ ವಿಕಾಸದ ಕಾಲಾನುಕ್ರಮ[ಬದಲಾಯಿಸಿ]

  1. REDIRECT Template:External timeline

ಗಮನಿಸಿ:ಈ ಕಾಲಗಣನೆ ಶಾಸ್ತ್ರದ ಎಲ್ಲ ದಿನಾಂಕಗಳು ಮತ್ತು ಕಾಲಗಳು ಅಂದಾಜಿನಿಂದ ಕೂಡಿಲ್ಲ. ಇವನ್ನು ಆರ್ಡರ್ ಆಫ್ ಮ್ಯಾಗ್ನಿಟ್ಯೂಡ್(ಗಾತ್ರದ ಆಧಾರದ ಮೇಲೆ ವರ್ಗೀಕರಣ)ಸೂಚಿಯಾಗಿ ಮಾತ್ರ ತೆಗೆದುಕೊಳ್ಳಬೇಕು.

ಪೂರ್ವ ಸೌರವ್ಯೂಹ ಸೌರವ್ಯೂಹ ರಚನೆಯಾಗುವ ಮುಂಚಿನ ಶತಕೋಟಿ ವರ್ಷಗಳು ಮುಂಚಿನ ತಲೆಮಾರುಗಳ ನಕ್ಷತ್ರಗಳು ಜೀವಿಸಿ, ಮೃತವಾಗಿ, ಅಂತರತಾರಾ ಮಾಧ್ಯಮಕ್ಕೆ ಭಾರೀ ಮೂಲವಸ್ತುಗಳನ್ನು ಸೇರಿಸಿತು. ಅದರಿಂದ ಸೌರವ್ಯೂಹ ರಚನೆಯಾಯಿತು.[೧೪]
~ ಸೌರವ್ಯೂಹ ರಚನೆಯಾಗುವುದಕ್ಕಿಂತ ಮುಂಚಿನ 50ದಶಲಕ್ಷ ವರ್ಷಗಳು
ಸೌರವ್ಯೂಹವು ನಕ್ಷತ್ರ ರಚನೆ ಪ್ರದೇಶದ ರೀತಿಯಲ್ಲಿ ಓರಿಯನ್ ನೀಹಾರಿಕೆಯಲ್ಲಿ ರಚನೆಯಾಗಿದ್ದರೆ, ಬಹುತೇಕ ಬೃಹತ್ ನಕ್ಷತ್ರಗಳು ರಚನೆಯಾಗಿ ,ಜೀವಿಸಿ ಸೂಪರ್‌ನೋವಾದಲ್ಲಿ ಸ್ಫೋಟಗೊಳ್ಳುತ್ತಿದ್ದವು. ಪ್ರೈಮಲ್ ಸೂಪರ್‌ನೋವಾ  ಎಂದು ಕರೆಯುವ ಒಂದು ನಿರ್ದಿಷ್ಟ ಸೂಪರ್‌ನೋವಾ ಸೌರವ್ಯೂಹದ ರಚನೆಗೆ ಪ್ರಚೋದನೆ ನೀಡಿರಬಹುದು.[೧೬][೧೭]
ಸೂರ್ಯನ ರಚನೆ 0 –100,000 ವರ್ಷಗಳು ಪೂರ್ವ-ಸೌರ ನೀಹಾರಿಕೆ ರಚನೆಯಾಗಿ ಕುಸಿಯಲಾಂಭಿಸುತ್ತದೆ. ಸೂರ್ಯ ರಚನೆಯನ್ನು ಆರಂಭಿಸುತ್ತದೆ.[೨೯]
100,000 – 50 ದಶಲಕ್ಷ ವರ್ಷಗಳು ಸೂರ್ಯT ಟೌರಿ ಪ್ರೊಟೊಸ್ಟಾರ್.[೯]
100,000 - 10ದಶಲಕ್ಷ ವರ್ಷಗಳು ಹೊರ ಗ್ರಹಗಳ ರಚನೆ 10 ದಶಲಕ್ಷ ವರ್ಷಗಳಲ್ಲಿ, ಪ್ರೊಟೊಪ್ಲಾನಟರಿ ತಟ್ಟೆಯ ಅನಿಲವು ಚಲಿಸಿ, ಹೊರ ಗ್ರಹ ರಚನೆಯು ಪೂರ್ಣವಾಗಿರಬಹುದು.[೨೯]
10ದಶಲಕ್ಷ - 100ದಶಲಕ್ಷ ವರ್ಷಗಳು ಘನರೂಪಿ ಗ್ರಹಗಳು ಮತ್ತು ಚಂದ್ರನ ರೂಪ ದೈತ್ಯ ಅಪ್ಪಳಿಕೆಗಳ ವಿದ್ಯಮಾನ ಭೂಮಿಗೆ ನೀರಿನ ರವಾನೆ[೨]
ಮುಖ್ಯ ಕ್ರಮಾವಳಿ 50 ದಶಲಕ್ಷ ವರ್ಷಗಳು ಸೂರ್ಯ ಮುಖ್ಯ ಅನುಕ್ರಮ ದ ನಕ್ಷತ್ರವಾಗುತ್ತದೆ[೨೫]
200ದಶಲಕ್ಷ ವರ್ಷಗಳು ಭೂಮಿಯಲ್ಲಿ ಅತೀ ಪ್ರಾಚೀನ ಕಲ್ಲುಗಳ ರಚನೆ.[೧೧೨]
500 ದಶಲಕ್ಷ – 600 ದಶಲಕ್ಷ ವರ್ಷಗಳು ಗುರು ಮತ್ತು ಶನಿಯ ಕಕ್ಷೆಗಳಲ್ಲಿ ಅನುರಣನದಿಂದ ನೆಪ್ಚ್ಯೂನ್‌ನನ್ನು ಕೈಪರ್ ಪಟ್ಟಿಯೊಳಗೆ ಹೊರದೂಡುತ್ತದೆ. ಒಳ ಸೌರವ್ಯೂಹದಲ್ಲಿ ಇತ್ತೀಚಿನ ಭಾರೀ ಅಪ್ಪಳಿಸುವಿಕೆ ಸಂಭವಿಸುತ್ತದೆ.[೨]
800 ದಶಲಕ್ಷ ವರ್ಷಗಳು ಭೂಮಿಯಲ್ಲಿ ಅತೀ ಪ್ರಾಚೀನ ಜೀವನ.[೫೮] ಊವರ್ಟ್ ಮೋಡ ಗರಿಷ್ಠ ದ್ರವ್ಯರಾಶಿಯನ್ನು ಮುಟ್ಟುತ್ತದೆ.[೬೧]
4.6 ಶತಕೋಟಿ ವರ್ಷಗಳು
ಇಂದು ಸೂರ್ಯ ಮುಖ್ಯ ಅನುಕ್ರಮ ನಕ್ಷತ್ರವಾಗುತ್ತದೆ. ಪ್ರತಿ 1 ಶತಕೋಟಿ ವರ್ಷಗಳಲ್ಲಿ ಸತತವಾಗಿ ~10%ಬಿಸಿಯಾಗಿ ಮತ್ತು ಪ್ರಕಾಶಮಾನವಾಗಿ ಬೆಳೆಯುತ್ತದೆ.[೯೦]
6 ಶತಕೋಟಿ ವರ್ಷಗಳು
ಸೂರ್ಯನ ವಾಸಯೋಗ್ಯ ವಲಯವು ಭೂಮಿಯ ಕಕ್ಷೆಯಿಂದ ಹೊರಹೋಗಿ ಬಹುಶಃ ಮಂಗಳನ ಕಕ್ಷೆಗೆ ಸ್ಥಳಾಂತರವಾಗಬಹುದು.[೯೩]
7 ಶತಕೋಟಿ ವರ್ಷಗಳು
ಕ್ಷೀರಪಥ ಮತ್ತು ಆಂಡ್ರೊಮೆಡಾ ಗ್ಯಾಲಕ್ಸಿ ಡಿಕ್ಕಿಹೊಡೆಯಲು ಆರಂಭಿಸುತ್ತದೆ. ಸೌರವ್ಯೂಹವು ಆಂಡ್ರೋಮಿಡಾ ಸೆರೆಗೆ ಒಳಗಾಗುವ ಕಡಿಮೆ ಅವಕಾಶವಿದ್ದು, ಎರಡೂ ಗ್ಯಾಲಕ್ಸಿಗಳು ಸಂಪೂರ್ಣವಾಗಿ ಸಮ್ಮಿಳನವಾಗುತ್ತದೆ.[೧೦೯]
ನಂತರದ-ಮುಖ್ಯ ಅನುಕ್ರಮ 10 ಶತಕೋಟಿ – 12 ಶತಕೋಟಿ ವರ್ಷಗಳು ಸೂರ್ಯನು ತನ್ನ ತಿರುಳಿ(ಮಧ್ಯಭಾಗ)ನ ಸುತ್ತಲಿರುವ ಕೋಶದಲ್ಲಿ ಜಲಜನಕವನ್ನು ಉರಿಸಲು ಆರಂಭಿಸುತ್ತದೆ ಹಾಗು ತನ್ನ ಮುಖ್ಯ ಅನುಕ್ರಮ ಜೀವನವನ್ನು ಕೊನೆಗೊಳಿಸುತ್ತದೆ. ಸೂರ್ಯನು ಹರ್ಟ್ಸ್‌ಸ್ಪ್ರಂಗ್-ರಸ್ಸೆಲ್ ಚಿತ್ರದ ಕೆಂಪು ದೈತ್ಯ(ರಕ್ತ ದೈತ್ಯ) ನಕ್ಷತ್ರ ಶಾಖೆಯನ್ನು ಪ್ರವೇಶಿಸಿ, ಹೆಚ್ಚು ಪ್ರಕಾಶಮಾನವಾಗಿ ಬೆಳೆಯುತ್ತದೆ(2700ರವರೆಗೆ ಅಂಶದವರೆಗೆ),ದೊಡ್ಡದಾಗಿ(ತ್ರಿಜ್ಯದಲ್ಲಿ 250 ಅಂಶದವರೆಗೆ)ಮತ್ತು ತಂಪಾಗಿ(2600Kಇಳಿಮುಖ) ಸೂರ್ಯನು ಈಗ ಕೆಂಪು ದೈತ್ಯ ನಕ್ಷತ್ರ. ಬುಧ ಮತ್ತು ಬಹುಶಃ ಶುಕ್ರ ಮತ್ತು ಭೂಮಿಯನ್ನು ನುಂಗಲಾಗುತ್ತದೆ[೯೧][೯೬] ಶನಿಯ ಚಂದ್ರ ಟೈಟಾನ್ ವಾಸಯೋಗ್ಯವಾಗಬಹುದು.[೯೮]
~ 12 ಶತಕೋಟಿ ವರ್ಷಗಳು
ಸೂರ್ಯನು ಹೀಲಿಯಂ ಉರಿಯುವ ಸಮತಲದ ಶಾಖೆ ಮತ್ತು ಅಸಂಪಾತ ದೈತ್ಯ ಶಾಖೆಯ ಹಂತಗಳ ಮೂಲಕ ಹಾದುಹೋಗುತ್ತದೆ ಹಾಗು ನಂತರದ ಎಲ್ಲ ಮುಖ್ಯ ಅನುಕ್ರಮ ಹಂತಗಳಲ್ಲಿ ತನ್ನ ದ್ರವ್ಯರಾಶಿಯ ಒಟ್ಟು ~30% ಕಳೆದುಕೊಳ್ಳುತ್ತದೆ. ಗ್ರಹ ನೀಹಾರಿಕೆಯ ಉಚ್ಚಾಟನೆಯೊಂದಿಗೆ ಅಸಂಪಾತ ದೈತ್ಯ ನಕ್ಷತ್ರ ಶಾಖೆ ಅಂತ್ಯವಾಗುತ್ತದೆ. ಇದು ಸೂರ್ಯನ ತಿರುಳನ್ನು ಶ್ವೇತ ಕುಬ್ಜತಾರೆಯಾಗಿ ಹಿಂದೆ ಬಿಡುತ್ತದೆ.[೯೧][೧೦೧]
ಸೂರ್ಯನ ಪಳೆಯುಳಿಕೆ > 12 ಶತಕೋಟಿ ವರ್ಷಗಳು ಶ್ವೇತ ಕುಬ್ಜ ಸೂರ್ಯ ಶಕ್ತಿಯನ್ನು ಉತ್ಪಾದಿಸದೇ ಸತತವಾಗಿ ತಂಪು ಮತ್ತು ಮಬ್ಬಾಗುತ್ತದೆ. ಇದು ಲಕ್ಷಾಂತರ ಕೋಟಿ ವರ್ಷಗಳವರೆಗೆ ಮುಂದುವರಿದು, ತರುವಾಯ ಕಪ್ಪು ಕುಬ್ಜತಾರೆ ಸ್ಥಿತಿಗೆ ಮುಟ್ಟುತ್ತದೆ.[೧೦೩][೧೦೫]
~ 1 ಕ್ವಾಡ್ರಿಲಿಯನ್ ವರ್ಷಗಳು(1015ವರ್ಷಗಳು) ಸೂರ್ಯ 5 Kಗೆ ತಂಪಾಗುತ್ತಾನೆ.[೧೧೪] ಹಾದುಹೋಗುವ ನಕ್ಷತ್ರಗಳ ಗುರುತ್ವಶಕ್ತಿಯು ಕಕ್ಷೆಗಳಿಂದ ಗ್ರಹಗಳನ್ನು ಬೇರ್ಪಡಿಸುತ್ತದೆ. ಸೌರವ್ಯೂಹದ ಅಸ್ತಿತ್ವ ಅಂತ್ಯಗೊಳ್ಳುತ್ತದೆ.[೩]

ಇವನ್ನೂ ಗಮನಿಸಿ[ಬದಲಾಯಿಸಿ]

  • ಭೂಮಿಯ ಆಯಸ್ಸು
  • ಭೂಮಿಯ ಇತಿಹಾಸ
  • ಟೈಡಲ್ ಲಾಕಿಂಗ್(ಗುರುತ್ವಬಲದಿಂದ ಪರಸ್ಪರ ಒಂದೇ ಬದಿಯಲ್ಲಿ ಮುಖ)


ಟಿಪ್ಪಣಿಗಳು[ಬದಲಾಯಿಸಿ]

  1. ಖಗೋಳವಿಜ್ಞಾನ ಏಕಮಾನ ಅಥವಾ AU, ಭೂಮಿ ಮತ್ತು ಸೂರ್ಯನ ನಡುವಿನ ಸರಾಸರಿ ದೂರವಾಗಿದೆ. ಅಥವಾ ~150 ದಶಲಕ್ಷ ಕಿಲೋಮೀಟರ್‌ಗಳು. ಇದು ಅಂತರತಾರಾ ದೂರಗಳನ್ನು ಅಳೆಯುವ ಪ್ರಮಾಣಕ ಏಕಮಾನವಾಗಿದೆ.
  2. ಗುರು,ಶನಿ, ಯುರೇನಸ್ ಮತ್ತು ನೆಪ್ಚ್ಯೂನ್‌ನ ಒಟ್ಟು ದ್ರವ್ಯರಾಶಿ= 445.6 ಭೂಮಿಯ ದ್ರವ್ಯರಾಶಿಗಳು. ಉಳಿದ ವಸ್ತುವಿನ ದ್ರವ್ಯರಾಶಿ= ~5.26 ಭೂದ್ರವ್ಯರಾಶಿಗಳು ಅಥವಾ 1.1% (ನೋಡಿ ಸೋಲಾರ್ ಸಿಸ್ಟಮ್#ನೋಟ್ಸ್ ಎಂಡ್ ಲಿಸ್ಟ್ ಆಫ್ ಸೋಲಾರ್ ಸಿಸ್ಟಮ್ ಆಬ್ಜೆಕ್ಟ್ಸ್ ಬೈ ಮಾಸ್)
  3. ಶನಿ,ಯುರೇನಸ್ ಮತ್ತು ನೆಪ್ಚ್ಯೂನ್ ಎಲ್ಲವೂ ಹೊರಭಾಗಕ್ಕೆ ಚಲಿಸಿ, ಗುರುವು ಒಳಭಾಗಕ್ಕೆ ಚಲಿಸಲು ಕಾರಣವೇನೆಂದರೆ, ಸೌರವ್ಯೂಹದಿಂದ ಪುಟ್ಟಗ್ರಹಗಳನ್ನು ಉಚ್ಚಾಟಿಸುವಷ್ಟು ಗುರುವು ಬೃಹತ್ತಾಗಿರುತ್ತದೆ. ಆದರೆ ಉಳಿದ ಮೂರು ಹೊರಗ್ರಹಗಳು ಹಾಗಿರುವುದಿಲ್ಲ. ಸೌರವ್ಯೂಹದಿಂದ ವಸ್ತು ಉಚ್ಚಾಟನೆಯಾಗಲು, ಗುರುವು ಅದಕ್ಕೆ ಶಕ್ತಿಯನ್ನು ನೀಡುತ್ತದೆ ಮತ್ತು ಅದರ ಕೆಲವು ಕಕ್ಷೆಯ ಶಕ್ತಿಯನ್ನು ಕಳೆದುಕೊಂಡು ಒಳಮುಖವಾಗಿ ಚಲಿಸುತ್ತದೆ. ನೆಪ್ಚ್ಯೂನ್, ಯುರೇನಸ್ ಮತ್ತು ಶನಿ ಪುಟ್ಟಗ್ರಹಗಳನ್ನು ಹೊರಮುಖವಾಗಿ ಅಸ್ತವ್ಯಸ್ತಗೊಳಿಸಿದಾಗ, ಅವು ಅತೀ ವಿಕೇಂದ್ರೀಯವಾಗಿ ಅಂತ್ಯಗೊಂಡರೂ ಕಕ್ಷೆಗಳಿಗೆ ಬಂಧಿತವಾಗಿರುತ್ತದೆ. ಹೀಗಾಗಿ ಅಸ್ತವ್ಯಸ್ತಗೊಂಡ ಗ್ರಹಕ್ಕೆ ಹಿಂತಿರುಗಬಹುದು ಮತ್ತು ಅದರ ಕುಂಠಿತ ಶಕ್ತಿ ಪುನಃ ಸಿಗಬಹುದು. ಇನ್ನೊಂದು ಕಡೆ,ನೆಪ್ಚ್ಯೂನ್, ಯುರೇನಸ್ ಮತ್ತು ಶನಿ ವಸ್ತುಗಳನ್ನು ಒಳಮುಖವಾಗಿ ಕದಡಿದಾಗ, ಆ ಗ್ರಹಗಳು ಶಕ್ತಿಯನ್ನು ಗಳಿಸಿಕೊಂಡು, ಹೊರಭಾಗದತ್ತ ಚಲಿಸುತ್ತವೆ. ಹೆಚ್ಚು ಮುಖ್ಯವಾಗಿ, ಒಳಮುಖವಾಗಿ ಅಸ್ತವ್ಯಸ್ತವಾಗುವ ವಸ್ತು ಗುರುವನ್ನು ಸಂಧಿಸಿ, ಸೌರವ್ಯೂಹದಿಂದ ಉಚ್ಚಾಟನೆಯಾಗುವ ಹೆಚ್ಚಿನ ಅವಕಾಶವಿರುತ್ತದೆ. ಅಂತಹ ಪ್ರಕರಣದಲ್ಲಿ ಉಚ್ಚಾಟಿತ ವಸ್ತುವಿನ ಒಳಮುಖದ ವಿಚಲನದಿಂದ ನೆಪ್ಚ್ಯೂನ್,ಯುರೇನಸ್ ಮತ್ತು ಶನಿ ಗಳಿಸಿದ ಶಕ್ತಿಯು ಕಾಯಂ ಉಳಿಯುತ್ತದೆ.
  4. ಇವೆಲ್ಲ ಪ್ರಕರಣಗಳಲ್ಲಿ ಕೋನೀಯ ಆವೇಗ ಮತ್ತು ಶಕ್ತಿಯ ವರ್ಗಾವಣೆಯಲ್ಲಿ, ಎರಡು ಕಾಯ ವ್ಯವಸ್ಥೆಯ ಕೋನೀಯ ಆವೇಗವು ರಕ್ಷಣೆಯಾಗುತ್ತದೆ. ಇದಕ್ಕೆ ವಿರುದ್ಧವಾಗಿ, ಚಂದ್ರನ ಮುಖ್ಯಗ್ರಹದ ಸುತ್ತ ಪರಿಭ್ರಮಣೆ ಜತೆಗೆ ಮುಖ್ಯಗ್ರಹದ ಕಕ್ಷೆಯ ಪರಿಭ್ರಮಣೆಯ ಒಟ್ಟು ಶಕ್ತಿಯನ್ನು ರಕ್ಷಿಸಲಾಗುವುದಿಲ್ಲ.ಆದರೆ ಮುಖ್ಯಗ್ರಹದ ಕಾಯದ ಮೂಲಕ ಗುರುತ್ವ ಉಬ್ಬುವಿಕೆ ಚಲನೆಯಿಂದ ಉತ್ಪಾದಿತವಾದ ಘರ್ಷಣೆಯ ಬಿಸಿಯಿಂದ ಚೆದುರುವಿಕೆ ಉಂಟಾಗಿ ಅದರ ಶಕ್ತಿಯು ಕಾಲಕ್ರಮೇಣ ಕುಂಠಿತವಾಗುತ್ತದೆ. ಮುಖ್ಯ ಕಾಯವು ಘರ್ಷಣೆಯಿಲ್ಲದ ಮತ್ತು ಆಕರ್ಷಣೆಯಿಲ್ಲದ ಅನಿಲವಾಗಿದ್ದರೆ, ಅದರ ಗುರುತ್ವ ವಿರೂಪವು ಉಪಗ್ರಹದಲ್ಲಿ ಕೇಂದ್ರೀಕೃತವಾಗಿರುತ್ತದೆ ಮತ್ತು ಯಾವುದೇ ಸ್ಥಳಾಂತರ ಸಂಭವಿಸುವುದಿಲ್ಲ. ಘರ್ಷಣೆಯಿಂದ ಚಲನೆಯ ಶಕ್ತಿ ಕುಂಠಿತವಾದರೆ, ಕೋನೀಯ ಆವೇಗದ ಸ್ಥಳಾಂತರ ಸಾಧ್ಯವಾಗುತ್ತದೆ.

ಉಲ್ಲೇಖಗಳು[ಬದಲಾಯಿಸಿ]

  1. ಬೋವಿಯರ್, ಆಡ್ರೆ ಮತ್ತು ಮೀನಾಕ್ಷಿ ವಾಡ್ವಾ, "ದಿ ಏಜ್ ಆಫ್ ದಿ ಸೋಲಾರ್ ಸಿಸ್ಟಮ್ ರಿಡಿಫೈನ್ಡ್ ಬೈ ದಿ ಓಲ್ಡೆಸ್ಟ್ Pb-Pb ಏಜ್ ಆಫ್ ಎ ಮೆಟಿರಿಯೋಟಿಕ್ ಇನ್‌ಕ್ಲೂಷನ್.". ನೇಚರ್ ಜಿಯೊಸೈನ್ಸ್, ನೇಚರ್ ಪಬ್ಲಿಷಿಂಗ್ ಗ್ರೂಪ್, ಮ್ಯಾಕ್‌ಮಿಲನ್ ಪಬ್ಲಿಷರ್ಸ್ ಲಿಮಿಟೆಡ್‌ನ ವಿಭಾಗ ಆನ್‌ಲೈನ್‌ನಲ್ಲಿ 2010-08-22, ಮರುಸಂಪಾದಿಸಲಾಗಿದೆ 2010-08-26, doi: 10.1038/NGEO941.
    ಉಲ್ಕೆಗಳಲ್ಲಿ ಇದುವರೆಗೆ ಪತ್ತೆಯಾದ ಅತೀ ಪ್ರಾಚೀನ ಸೇರ್ಪಡೆಗಳನ್ನು ಆಧರಿಸಿದ ದಿನಾಂಕವು ಕುಸಿಯುತ್ತಿರುವ ಸೌರ ನೀಹಾರಿಕೆಯಲ್ಲಿ ರಚನೆಯಾದ ಪ್ರಥಮ ಘನವಸ್ತುವೆಂದು ಭಾವಿಸಲಾಗಿದೆ.
  2. ೨.೦ ೨.೧ ೨.೨ ೨.೩ ೨.೪ ೨.೫ ೨.೬ ೨.೭ [131]
  3. ೩.೦ ೩.೧ ೩.೨ Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  4. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  5. M. M. Woolfson (1984). "Rotation in the Solar System". Philosophical Transactions of the Royal Society of London 313: 5. doi:10.1098/rsta.1984.0078. 
  6. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  7. David Whitehouse (2005). The Sun: A Biography. John Wiley and Sons. ISBN 978-0470092972. 
  8. ೮.೦ ೮.೧ Simon Mitton (2005). "Origin of the Chemical Elements". Fred Hoyle: A Life in Science. Aurum. pp. 197–222. ISBN 978-1854109613. 
  9. ೯.೦ ೯.೧ ೯.೨ ೯.೩ ೯.೪ ೯.೫ Thierry Montmerle, Jean-Charles Augereau, Marc Chaussidon (2006). "Solar System Formation and Early Evolution: the First 100 Million Years". Earth, Moon, and Planets (Spinger) 98: 39–95. doi:10.1007/s11038-006-9087-5. 
  10. ೧೦.೦ ೧೦.೧ ೧೦.೨ ೧೦.೩ ೧೦.೪ Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  11. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  12. W. M. Irvine (1983). "The chemical composition of the pre-solar nebula". In T. I. Gombosi (ed.). Cometary Exploration 1. pp. 3–12. 
  13. Zeilik & Gregory (1998, p. 207)
  14. ೧೪.೦ ೧೪.೧ Charles H. Lineweaver (2001). "An Estimate of the Age Distribution of Terrestrial Planets in the Universe: Quantifying Metallicity as a Selection Effect". Icarus 151: 307. doi:10.1006/icar.2001.6607. arXiv:astro-ph/0012399. 
  15. doi:10.1080/00107511003764725
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  16. ೧೬.೦ ೧೬.೧ Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  17. ೧೭.೦ ೧೭.೧ Martin Bizzarro, David Ulfbeck, Anne Trinquier, Kristine Thrane, James N. Connelly, Bradley S. Meyer (2007). "Evidence for a Late Supernova Injection of 60Fe into the Protoplanetary Disk" (ABSTRACT PAGE). Science 316 (5828): 1178–1181. doi:10.1126/science.1141040. PMID 17525336. 
  18. Simon F. Portegies Zwart (2009). "The Lost Siblings of the Sun". Astrophysical Journal 696 (L13-L16): L13. doi:10.1088/0004-637X/696/1/L13. 
  19. Nathan A. Kaib and Thomas Quinn (2008). "The formation of the Oort cloud in open cluster environments". Icarus 197 (1): 221–238. doi:10.1016/j.icarus.2008.03.020. 
  20. Jane S. Greaves (2005). "Disks Around Stars and the Growth of Planetary Systems". Science 307 (5706): 68. doi:10.1126/science.1101979. PMID 15637266. 
  21. Caffe, M. W.; Hohenberg, C. M.; Swindle, T. D.; Goswami, J. N. (February 1, 1987). "Evidence in meteorites for an active early sun". Astrophysical Journal, Part 2 - Letters to the Editor 313: L31–L35. Bibcode:1987ApJ...313L..31C. doi:10.1086/184826. 
  22. M. Momose, Y. Kitamura, S. Yokogawa, R. Kawabe, M. Tamura, S. Ida (2003). "Investigation of the Physical Properties of Protoplanetary Disks around T Tauri Stars by a High-resolution Imaging Survey at lambda = 2 mm" (PDF). In Ikeuchi, S., Hearnshaw, J. and Hanawa, T. (eds.). The Proceedings of the IAU 8th Asian-Pacific Regional Meeting, Volume I 289. Astronomical Society of the Pacific Conference Series. p. 85. 
  23. Deborah L. Padgett, Wolfgang Brandner, Karl R. Stapelfeldt et al. (March 1999). "Hubble Space Telescope/NICMOS Imaging of Disks and Envelopes around Very Young Stars". The Astronomical Journal 117: 1490–1504. doi:10.1086/300781. 
  24. M. Küker, T. Henning, G. Rüdiger (2003). "Magnetic Star-Disk Coupling in Classical T Tauri Systems". Astrophysical Journal 589: 397. doi:10.1086/374408. 
  25. ೨೫.೦ ೨೫.೧ Sukyoung Yi, Pierre Demarque, Yong-Cheol Kim, Young-Wook Lee, Chang H. Ree, Thibault Lejeune, Sydney Barnes (2001). "Toward Better Age Estimates for Stellar Populations: The Y^{2} Isochrones for Solar Mixture". Astrophysical Journal Supplement 136: 417. doi:10.1086/321795. arXiv:astro-ph/0104292. 
  26. Zeilik & Gregory (1998, p. 320)
  27. A. P. Boss, R. H. Durisen (2005). "Chondrule-forming Shock Fronts in the Solar Nebula: A Possible Unified Scenario for Planet and Chondrite Formation" (ABSTRACT PAGE). The Astrophysical Journal 621: L137–L140. doi:10.1086/429160. 
  28. ೨೮.೦ ೨೮.೧ Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  29. ೨೯.೦೦ ೨೯.೦೧ ೨೯.೦೨ ೨೯.೦೩ ೨೯.೦೪ ೨೯.೦೫ ೨೯.೦೬ ೨೯.೦೭ ೨೯.೦೮ ೨೯.೦೯ ೨೯.೧೦ Douglas N. C. Lin (May 2008). "The Genesis of Planets" (FEE REQUIRED). Scientific American 298 (5): 50–59. doi:10.1038/scientificamerican0508-50. PMID 18444325. 
  30. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  31. ೩೧.೦ ೩೧.೧ ೩೧.೨ E. W. Thommes, M. J. Duncan, H. F. Levison (2002). "The Formation of Uranus and Neptune among Jupiter and Saturn". Astronomical Journal 123: 2862. doi:10.1086/339975. arXiv:astro-ph/0111290. 
  32. ೩೨.೦ ೩೨.೧ ೩೨.೨ ೩೨.೩ ೩೨.೪ ೩೨.೫ ೩೨.೬ ೩೨.೭ ೩೨.೮ Harold F. Levison, Alessandro Morbidelli, Crista Van Laerhoven et al. (2007). "Origin of the Structure of the Kuiper Belt during a Dynamical Instability in the Orbits of Uranus and Neptune". Icarus 196: 258. doi:10.1016/j.icarus.2007.11.035. arXiv:0712.0553. 
  33. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  34. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  35. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  36. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  37. ೩೭.೦ ೩೭.೧ ೩೭.೨ Jean-Marc Petit, Alessandro Morbidelli (2001). "The Primordial Excitation and Clearing of the Asteroid Belt" (PDF). Icarus 153: 338–347. doi:10.1006/icar.2001.6702. 
  38. ೩೮.೦ ೩೮.೧ Junko Kominami, Shigeru Ida (2001). "The Effect of Tidal Interaction with a Gas Disk on Formation of Terrestrial Planets". Icarus 157 (1): 43–56. doi:10.1006/icar.2001.6811.  More than one of |work= and |journal= specified (help)
  39. Sean C. Solomon (2003). "Mercury: the enigmatic innermost planet". Earth and Planetary Science Letters 216: 441–455. doi:10.1016/S0012-821X(03)00546-6. 
  40. Peter Goldreich, Yoram Lithwick, Re’em Sari (10 October 2004). "Final Stages of Planet Formation". The Astrophysical Journal 614: 497. doi:10.1086/423612. 
  41. ೪೧.೦ ೪೧.೧ ೪೧.೨ William F. Bottke, Daniel D. Durda, David Nesvorny et al. (2005). "Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion" (PDF). Icarus 179: 63–94. doi:10.1016/j.icarus.2005.05.017. 
  42. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  43. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  44. ೪೪.೦ ೪೪.೧ ೪೪.೨ David O’Brien, Alessandro Morbidelli, William F. Bottke (2007). "The primordial excitation and clearing of the asteroid belt—Revisited" (PDF). Icarus 191: 434–452. doi:10.1016/j.icarus.2007.05.005. 
  45. ೪೫.೦ ೪೫.೧ Sean N. Raymond, Thomas Quinn, Jonathan I. Lunine (2007). "High-resolution simulations of the final assembly of Earth-like planets 2: water delivery and planetary habitability". Astrobiology 7 (1): 66–84. doi:10.1089/ast.2006.06-0126. PMID 17407404. 
  46. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  47. Georgij A. Krasinsky, Elena V. Pitjeva, M. V. Vasilyev, E. I. Yagudina (July 2002). "Hidden Mass in the Asteroid Belt". Icarus 158 (1): 98–105. doi:10.1006/icar.2002.6837. 
  48. ೪೮.೦ ೪೮.೧ Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  49. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  50. A. Morbidelli, J. Chambers, J. I. Lunine, J. M. Petit, F. Robert, G. B. Valsecchi, K. E. Cyr (2000). "Source regions and timescales for the delivery of water to the Earth". Meteoritics & Planetary Science 35: 1309. ISSN 1086-9379. 
  51. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  52. ೫೨.೦ ೫೨.೧ Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  53. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  54. R. Malhotra (1995). "The Origin of Pluto's Orbit: Implications for the Solar System Beyond Neptune". Astronomical Journal 110: 420. doi:10.1086/117532. arXiv:astro-ph/9504036. 
  55. M. J. Fogg, R. P. Nelson (2007). "On the formation of terrestrial planets in hot-Jupiter systems". Astronomy & Astrophysics 461: 1195. doi:10.1051/0004-6361:20066171. arXiv:astro-ph/0610314. 
  56. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  57. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  58. ೫೮.೦ ೫೮.೧ Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  59. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  60. ೬೦.೦ ೬೦.೧ Craig B. Agnor, Hamilton P. Douglas (2006). "Neptune’s capture of its moon Triton in a binary-planet gravitational encounter" (PDF). Nature 441 (7090): 192–194. doi:10.1038/nature04792. PMID 16688170. Archived from the original (PDF) on 2007-06-21. 
  61. ೬೧.೦ ೬೧.೧ Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  62. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  63. ೬೩.೦ ೬೩.೧ William F. Bottke, D. Durba, D. Nesvorny et al. (2005). "The origin and evolution of stony meteorites" (PDF). Proceedings of the International Astronomical Union. Dynamics of Populations of Planetary Systems 197. pp. 357–374. doi:10.1017/S1743921304008865. 
  64. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  65. N. Takato, S. J. Bus et al. (2004). "Detection of a Deep 3-\mum Absorption Feature in the Spectrum of Amalthea (JV)". Science 306 (5705): 2224. doi:10.1126/science.1105427. PMID 15618511. 
    ಇದನ್ನೂ ಗಮನಿಸಿ [176]
  66. D. C. Jewitt, S. Sheppard, C. Porco (2004). "Jupiter's outer satellites and Trojans" (PDF). In Fran Bagenal, Timothy E. Dowling, William B. McKinnon (eds.). Jupiter. The Planet, Satellites and Magnetosphere. Cambridge University Press. pp. 263–280. ISBN 0-521-81808-7. Archived from the original (PDF) on 2007-06-14. 
  67. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  68. Zeilik & Gregory (1998, pp. 118–120)
  69. ೬೯.೦ ೬೯.೧ R. M. Canup, E. Asphaug (2001). "Origin of the Moon in a giant impact near the end of the Earth's formation". Nature 412 (6848): 708. doi:10.1038/35089010. PMID 11507633. 
  70. D. J. Stevenson (1987). "Origin of the moon – The collision hypothesis". Annual Review of Earth and Planetary Sciences 15: 271. doi:10.1146/annurev.ea.15.050187.001415. 
  71. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  72. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  73. ೭೩.೦ ೭೩.೧ J. Laskar (1994). "Large-scale chaos in the solar system". Astronomy and Astrophysics 287: L9–L12. 
  74. Gerald Jay Sussman, Jack Wisdom (1988). "Numerical evidence that the motion of Pluto is chaotic" (PDF). Science 241 (4864): 433–437. doi:10.1126/science.241.4864.433. PMID 17792606. 
  75. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  76. ೭೬.೦ ೭೬.೧ Wayne B. Hayes (2007). "Is the outer Solar System chaotic?". Nature Physics 3: 689–691. doi:10.1038/nphys728. arXiv:astro-ph/0702179. 
  77. Ian Stewart (1997). Does God Play Dice? (2nd ed.). Penguin Books. pp. 246–249. ISBN 0-14-025602-4. 
  78. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  79. C.D. Murray & S.F. Dermott (1999). Solar System Dynamics. Cambridge University Press. p. 184. 
  80. Dickinson, Terence (1993). From the Big Bang to Planet X. Camden East, Ontario: Camden House. pp. 79–81. ISBN 0-921820-71-2. 
  81. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  82. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  83. Bruce G. Bills, Gregory A. Neumann, David E. Smith, and Maria T. Zuber (2006). "Improved estimate of tidal dissipation within Mars from MOLA observations of the shadow of Phobos". Journal of Geophysical Research 110: E07004. doi:10.1029/2004JE002376. Archived from the original on 2012-12-10. 
  84. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  85. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  86. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  87. Marc Buie, William Grundy, Eliot Young, Leslie Young, Alan Stern (2006). "Orbits and Photometry of Pluto's Satellites: Charon, S/2005 P1, and S/2005". The Astronomical Journal 132: 290. doi:10.1086/504422. arXiv:astro-ph/0512491. 
  88. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  89. "Saturn's recycled rings". Astronomy Now: 9. February 2008. 
  90. ೯೦.೦ ೯೦.೧ ೯೦.೨ Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  91. ೯೧.೦ ೯೧.೧ ೯೧.೨ ೯೧.೩ ೯೧.೪ ೯೧.೫ ೯೧.೬ ೯೧.೭ K. P. Schroder, Robert Connon Smith (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society 386: 155–163. doi:10.1111/j.1365-2966.2008.13022.x. 
  92. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  93. ೯೩.೦ ೯೩.೧ Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  94. Zeilik & Gregory (1998, p. 320–321)
  95. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  96. ೯೬.೦ ೯೬.೧ ೯೬.೨ ೯೬.೩ I. J. Sackmann, A. I. Boothroyd, K. E. Kraemer (1993). "Our Sun. III. Present and Future". Astrophysical Journal 418: 457. doi:10.1086/173407. 
  97. Zeilik & Gregory (1998, p. 322)
  98. ೯೮.೦ ೯೮.೧ Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  99. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  100. K. R. Rybicki, C. Denis (2001). "On the Final Destiny of the Earth and the Solar System". Icarus 151 (1): 130–137. doi:10.1006/icar.2001.6591. 
  101. ೧೦೧.೦ ೧೦೧.೧ Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  102. B. T. Gänsicke, T. R. Marsh, J. Southworth, A. Rebassa-Mansergas (2006). "A Gaseous Metal Disk Around a White Dwarf". Science 314 (5807): 1908–1910. doi:10.1126/science.1135033. PMID 17185598.  More than one of |number= and |issue= specified (help)
  103. ೧೦೩.೦ ೧೦೩.೧ Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  104. T. S. Metcalfe, M. H. Montgomery, A. Kanaan (2004). "Testing White Dwarf Crystallization Theory with Asteroseismology of the Massive Pulsating DA Star BPM 37093". Astrophysical Journal 605: L133. doi:10.1086/420884. arXiv:astro-ph/0402046. 
  105. ೧೦೫.೦ ೧೦೫.೧ Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  106. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  107. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  108. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  109. ೧೦೯.೦ ೧೦೯.೧ ೧೦೯.೨ ೧೦೯.೩ ೧೦೯.೪ Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  110. ೧೧೦.೦ ೧೧೦.೧ Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  111. Lua error in Module:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  112. ೧೧೨.೦ ೧೧೨.೧ Simon A. Wilde, John W. Valley, William H. Peck, Colin M. Graham (2001). "Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago" (PDF). Nature 409 (6817): 175. doi:10.1038/35051550. PMID 11196637. 
  113. Gary Ernst Wallace (2000). "Earth's Place in the Solar System". Earth Systems: Processes and Issues. Cambridge University Press. pp. 45–58. ISBN 0521478952. 
  114. Barrow, John D.; Tipler, Frank J. (1988). The Anthropic Cosmological Principle. Oxford University Press. ISBN 978-0-19-282147-8. LCCN 87028148. 

ಗ್ರಂಥಸೂಚಿ[ಬದಲಾಯಿಸಿ]

  • Michael A. Zeilik, Stephen A. Gregory (1998). Introductory Astronomy & Astrophysics (4th ed.). Saunders College Publishing. ISBN 0030062284. 

ಬಾಹ್ಯ ಕೊಂಡಿಗಳು[ಬದಲಾಯಿಸಿ]