ಫ್ಯಾಕ್ಟೋರಿಯಲ್

ವಿಕಿಪೀಡಿಯ ಇಂದ
Jump to navigation Jump to search
ಕೆಲವು ಆಯ್ದ ಸಂಖ್ಯೆಗಳ ಫ್ಯಾಕ್ಟೋರಿಯಲ್ ಸರಣಿ ಟೆಂಪ್ಲೇಟು:OEIS; ತುಂಬಾ ದೊಡ್ಡ ಸಂಖ್ಯೆಗಳನ್ನು ವೈಜ್ಞಾನಿಕ ವಿಧಿಯಲ್ಲಿ ಬರೆಯಲಾಗಿದೆ.
n n!
0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880
10 3628800
11 39916800
12 479001600
13 6227020800
14 87178291200
15 1307674368000
16 20922789888000
17 355687428096000
18 6402373705728000
19 121645100408832000
20 2432902008176640000
25 1.551121004×1025
50 3.041409320×1064
70 1.197857167×10100
100 9.332621544×10157
450 1.733368733×101000
1000 4.023872601×102567
3249 6.412337688×1010000
10000 2.846259681×1035659
25206 1.205703438×10100000
100000 2.824229408×10456573
205023 2.503898932×101000004
1000000 8.263931688×105565708
10100 109.956570552×10101

ಗಣಿತದಲ್ಲಿ ಫ್ಯಾಕ್ಟೋರಿಯಲ್ ಎಂಬುದು ಸಾಧಾರಣ ಬಳಕೆಯಲ್ಲಿರುವ ಒಂದು ಪರಿಕಲ್ಪನೆ. n ಎಂಬ ಒಂದು ಋಣಾತ್ಮಕವಲ್ಲದ ಪೂರ್ಣಸಂಖ್ಯೆಯ ಫ್ಯಾಕ್ಟೋರಿಯಲ್ ಅಥವಾ n! ಹೀಗೆ ಕಂಡುಹಿಡಿಯುತ್ತೇವೆ.

ಅರ್ಥಾತ್, n ಸಂಖ್ಯೆಯಿಂದ ಪ್ರಾರಂಭಿಸಿ ಒಂದನ್ನು ಕಳೆಯುತ್ತಾ ಕೊನೆಗೆ ಅಂಕಿ ಒಂದರವರೆಗೆ ಬರುವುದು. ಹೀಗೆ ಲಭ್ಯವಾದ ಸಂಖ್ಯೆಗಳನ್ನು ಪರಸ್ಪರ ಗುಣಿಸುವುದು. ಉದಾಹರಣೆಗೆ 5! ಕಂಡುಹಿಡಿಯಲು ಕೆಳಗಿನ ಲೆಕ್ಕ ನೋಡಿ.

ಶೂನ್ಯದ ಫ್ಯಾಕ್ಟೋರಿಯಲನ್ನು 1 ಎಂದು ನಿರ್ಧರಿಸಲಾಗಿದೆ.[೧]

ಫ್ಯಾಕ್ಟೋರಿಯಲ್ ಎಂಬ ಗಣಿತದ ಅನೇಕ ಪ್ರಕಾರಗಳಲ್ಲಿ ಉಪಯುಕ್ತ, ಉದಾಹರಣೆಗೆ ಎಣಿಕೆ (ಕಾಂಬಿನೇಟರಿಕ್ಸ್), ಬೀಜಗಣಿತ (ಆಲ್ಜೀಬ್ರಾ) ಮತ್ತು ಗಣಿತೀಯ ವಿಶ್ಲೇಷಣೆ. n ವಸ್ತುಗಳನ್ನು ಒಂದು ಸಾಲಿನಲ್ಲಿ n! ವಿಧಗಳಲ್ಲಿ ಜೋಡಿಸಬಹುದು ಎಂಬುದು ಇದಕ್ಕೆ ಹಿನ್ನೆಲೆ. ಉದಾಹರಣೆಗೆ ಇಡ್ಲಿ, ದೋಸೆ, ವಡೆ ಎಂಬ ಮೂರು ವಸ್ತುಗಳನ್ನು ಸಾಲಾಗಿ 6 ವಿಧಗಳಲ್ಲಿ ಜೋಡಿಸಬಹುದು (ಕೆಳಗೆ ನೋಡಿ). 6 = 3! ಎಂಬುದನ್ನು ಗಮನಿಸಿ. ಮೊದಲ ಸ್ಥಾನದಲ್ಲಿ ಕೊಟ್ಟಿರುವ ಯಾವುದೇ ಮೂರು ವಸ್ತುಗಳನ್ನು ಕೂಡಿಸಬಹುದು. ಅನಂತರ ಉಳಿಯುವುದು 2 ವಸ್ತುಗಳು. ಕೊನೆಗೆ ಉಳಿಯುವುದು ಒಂದೇ ಒಂದು. ಹೀಗಾಗಿ ಪ್ರತಿ ಹೆಜ್ಜೆಯಲ್ಲೂ ನಮಗೆ ಇರುವ ಸಾಧ್ಯತೆಗಳು 3, 2, 1. ಒಟ್ಟು ಸಾಧ್ಯತೆಗಳು :. ಇದನ್ನು ಕುರಿತು ಹನ್ನೆರಡನೇ ಶತಮಾನದ ಭಾರತೀಯ ಗಣಿತಜ್ಞರಿಗೆ ತಿಳಿದಿತ್ತು.[೨]. n! ಎಂಬ ಗಣಿತ ಸಂಜ್ಞೆಯನ್ನು ಮೊದಲು ಪ್ರಯೋಗಿಸಿದವನು ಕ್ರಿಶ್ಚಿಯನ್ ಕ್ರಾಂಪ್ ಎಂಬ ಫ್ರಾನ್ಸ್ ಮೂಲದ ಗಣಿತಜ್ಞ. (1808)[೩]

ಇಡ್ಲಿ -ದೋಸೆ -ವಡೆ

ಇಡ್ಲಿ - ವಡೆ - ದೋಸೆ

ದೋಸೆ - ಇಡ್ಲಿ -ವಡೆ

ದೋಸೆ - ವಡೆ - ಇಡ್ಲಿ

ವಡೆ - ಇಡ್ಲಿ -ದೋಸೆ

ವಡೆ - ದೋಸೆ - ಇಡ್ಲಿ

ವ್ಯಾಖ್ಯೆ[ಬದಲಾಯಿಸಿ]

'n! ಅಥವಾ ಫ್ಯಾಕ್ಟೋರಿಯಲ್ n ಎಂಬುದನ್ನು ಹೀಗೆ ವ್ಯಾಖ್ಯೆ ಮಾಡಲಾಗುತ್ತದೆ.

ಇಲ್ಲಿ n ≥ 1 ಎಂಬುದು ಒಂದು ಪೂರ್ಣಸಂಖ್ಯೆ. ಮೇಲಿನ ಸಮೀಕರಣದಿಂದ ಒಂದು ಪುನರಾವರ್ತಕ ಸಂಬಂಧ ಅಥವಾ ರಿಕರೆನ್ಸ್ ರಿಲೇಶನ್ ದೊರೆಯುತ್ತದೆ.

.

E.g.:

0![ಬದಲಾಯಿಸಿ]

ಮೇಲೆ ಕಾಣಿಸಿದ ಪುನರಾವರ್ಥಕ ಸಂಬಂಧವನ್ನು ಸ್ಥಾಪಿಸಲು ಫ್ಯಾಕ್ತೋರಿಯಲ್ 0 = 0! = 1 ಎಂಬ 'ವ್ಯಾಖ್ಯೆ ಅಗತ್ಯ.

ಹೀಗಾಗಿ

ಇದನ್ನು ಹೀಗೂ ಅರ್ಥೈಸಿಕೊಳ್ಳಬಹುದು. ಸೊನ್ನೆ ವಸ್ತುಗಳನ್ನು ಒಂದು ಸಾಲಾಗಿ ಜೋಡಿಸಲು ಕೇವಲ ಒಂದು ರೀತಿಯಲ್ಲಿ ಸಾಧ್ಯ.

ಹಾಗೆ, ಸೊನ್ನೆ ವಸ್ತುಗಳು ಲಭ್ಯವಾದಾಗ ಅವುಗಳಲ್ಲಿ ಸೊನ್ನೆ ವಸ್ತುಗಳನ್ನು ಆಯ್ದುಕೊಳ್ಳುವುದು ಒಂದು ರೀತಿಯಲ್ಲಿ ಮಾತ್ರ ಸಾಧ್ಯ. ಇದನ್ನು ಕೆಳಗೆಕಂಡಂತೆ ಬರೆಯುತ್ತೇವೆ.

.

n ವಸ್ತುಗಳು ಲಭ್ಯವಾದಾಗ ಅವುಗಳಲ್ಲಿ ಎಲ್ಲವನ್ನೂ ಆಯ್ದುಕೊಳ್ಳುವುದು ಕೂಡಾ ಒಂದೇ ರೀತಿಯಲ್ಲಿ ಸಾಧ್ಯ.

.

0! = 1 ಎಂಬ ವ್ಯಾಖ್ಯೆ ಇರುವುದರಿಂದ ಅನೇಕ ಗಣಿತ ಸಮೀಕರಣಗಳು ಸುಲಭವಾಗುತ್ತವೆ. ಉದಾಹರಣೆಗೆ,

ಪೂರ್ಣವಲ್ಲದ ಸಂಖ್ಯೆಗಳ ಫ್ಯಾಕ್ಟೋರಿಯಲ್[ಬದಲಾಯಿಸಿ]

ಪೂರ್ಣವಲ್ಲದ ಸಂಖ್ಯೆಗಳಿಗೂ ಫ್ಯಾಕ್ಟೋರಿಯಲ್ ವ್ಯಾಖ್ಯೆಯನ್ನು ಕೆಲವು ಗಣಿತಜ್ಞರು ನೀಡಿದ್ದಾರೆ.

ಉಪಯೋಗಗಳು[ಬದಲಾಯಿಸಿ]

  • n ವಸ್ತುಗಳನ್ನು ಸಾಲಾಗಿ ಜೋಡಿಸಲು n! ವಿಧಾನಗಳಿವೆ. ಇವನ್ನು ಜೋಡಣೆಗಳು ಅಥವಾ ಪರ್ಮುಟೇಶನ್ ಎಂದು ಕೂಡಾ ಕರೆಯುತ್ತೇವೆ. [೪][೫]
  • ಕೆಲವು ಗಣಿತ ಸೂತ್ರಗಳಲ್ಲಿ ಫ್ಯಾಕ್ಟೋರಿಯಲ್ ಎಂಬುದು ಛೇದದಲ್ಲಿ ಕಾಣಿಸಿಕೊಳ್ಳುತ್ತದೆ. ಇದರ ಅರ್ಥ ವಸ್ತುಗಳ ಜೋಡಣೆಯಲ್ಲಿ ಕ್ರಮ ಮುಖ್ಯವಲ್ಲ ಎಂದು. ಇದಕ್ಕೊಂದು ಉದಾಹರಣೆ. n ವಸ್ತುಗಳ ಒಂದು ಸೆಟ್ (ಜೊತೆ) ಇದ್ದರೆ ಅದರಲ್ಲಿ k ವಸ್ತುಗಳ ಸಬ್-ಸೆಟ್‍ಗಳನ್ನು ರಚಿಸಬೇಕಾಗಿದೆ. ಮೊದಲ ವಸ್ತುವನ್ನು n ರೀತಿಯಲ್ಲಿ, ಎರಡನೆಯ ವಸ್ತುವನ್ನು n-1 ರೀತಿಗಳಲ್ಲಿ, ಕೊನೆಗೆ k ಕ್ರಮಾಂಕದ ಸಂಖ್ಯೆಯನ್ನು n-k+1 ರೀತಿಗಳಲ್ಲಿ ಆರಿಸಿಕೊಳ್ಳಬಹುದು. ಆದರೆ ಈ ವಸ್ತುಗಳನ್ನು ಆರಿಸಿ/ಜೋಡಿಸುವ ಕ್ರಮ ಮುಖ್ಯವಲ್ಲ. ಹೀಗಾಗಿ ಒಟ್ಟು ಸಬ್-ಸೆಟ್‍ಗಳ ಸಂಖ್ಯೆ
ಈ ಸಂಖ್ಯೆಯನ್ನು ಬೈನಾಮಿಯಲ್ ಕೋಯೆಫಿಶಿಯೆಂಟ್ ಎನ್ನುತ್ತಾರೆ [೬] ಮತ್ತ್ತು ಎಂದು ಬರೆಯುತ್ತಾರೆ. ಇದು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯದಲ್ಲಿ ಕಾಣಿಸಿಕೊಳ್ಳುವ ಕಾರಣ ಹೀಗೆ ನಾಮಕರಣ ಮಾಡಲಾಗಿದೆ.
  • ಕ್ಯಾಲ್ಕುಲಸ್ವಿಭಾಗದಲ್ಲೂ ಫ್ಯಾಕ್ಟೋರಿಯಲ್ ಕಾಣಿಸಿಕೊಳ್ಳುತ್ತದೆ. ಉದಾಹರಣೆಗೆ ಟೇಲರ್ ಸೂತ್ರದಲ್ಲಿ,[೭].
  • ಫ್ಯಾಕ್ಟೋರಿಯಲ್ ಅತ್ಯಂತ ಸಾಧಾರಣವಾಗಿ ಕಾಣಿಸಿಕೊಳ್ಳುವುದು ಸಂಭವನೀಯತೆ ಎಂಬ ಗಣಿತಪ್ರಕಾರದಲ್ಲಿ.[೮]
  • ಫ್ಯಾಕ್ಟೋರಿಯಲ್ ಸಂಖ್ಯೆಯನ್ನು ಹೀಗೂ ಬರೆಯಬಹುದು.
ಇಲ್ಲಿ ಎಂಬುದು ಡಿಫರೆನ್ಸಿಯೇಶನ್ ಎಂಬ ಪ್ರಕ್ರಿಯೆಯ ಸಂಕೇತ.</math>[೯]


n ದೊಡ್ಡ ಸಂಖ್ಯೆಯಾದಾಗ ಅದರ ಫ್ಯಾಕ್ಟೋರಿಯಲ್ ಹೇಗೆ ಅಭಿವೃದ್ಧಿ ಹೊಂದುತ್ತದೆ?[ಬದಲಾಯಿಸಿ]

'ಫ್ಯಾಕ್ಟೋರಿಯಲ್ ಸಂಖ್ಯೆಯ ಲಾಗರಿತಂನ ಅಭಿವೃದ್ಧಿ ರೇಖೆ

n ದೊಡ್ಡ ಸಂಖ್ಯೆಯಾದಂತೆ ಅದರ ಫ್ಯಾಕ್ಟೋರಿಯಲ್ ಕ್ಷಿಪ್ರಗತಿಯಲ್ಲಿ ಅಭಿವೃದ್ಧಿ ಹೊಂದುತ್ತದೆ. ಈ ವೇಗವು ಮಿಕ್ಕೆಲ್ಲ ಪಾಲಿನಾಮಿಯಲ್‍ಗಳ ಮತ್ತು ಎಕ್ಸ್ಪೋನೆನ್ಶಿಯಲ್‍ಗಿಂತ ಹೆಚ್ಚು. n! ಎಂಬುದನ್ನು ಅಂದಾಜು ಮಾಡಲು ಹಲವು ವಿಧಾನಗಳಿವೆ. ಮೊದಲು n! ಎಂಬುದರ ನೈಜ ಲಾಗರಿತಂ ತೆಗೆದುಕೊಂಡರೆ ಪ್ರಾಪ್ತವಾಗುವುದು,

ln n! ಎಂಬುದರ ಅಭಿವೃದ್ಧಿಯನ್ನು ಗಮನಿಸಿದಾಗ ಅದು ಒಂದು ಸರಳರೇಖೆಯಂತೆ ತೋರಿದರೂ ಅದು ವಾಸ್ತವವಲ್ಲ. ಮೇಲಿನ ಸೂತ್ರವನ್ನು ಸ್ವಲ್ಪ ಬದಲಾಯಿಸಿದರೆ ln n! ಎಂಬುದರ ಅಂದಾಜು ದೊರೆಯುತ್ತದೆ.

ಇದಕ್ಕಿಂತ ಸರಳವಾದ ಅಂದಾಜು ಕೆಲವೊಮ್ಮೆ ಉಪಯುಕ್ತ. ಮೇಲಿನ ಸೂತ್ರವನ್ನು ಬಳಸಿ

 ಎಂಬ ಸಂಬಂಧವನ್ನು ಏರ್ಪಡಿಸಬಹುದು; ಹಾಗೆಯೇ n ≥ 6 ಆದಾಗ  ಎಂಬ ಸಂಬಂಧವನ್ನು ಏರ್ಪಡಿಸಬಹುದು.
ಫ್ಯಾಕ್ಟೋರಿಯಲ್ ಸಂಖ್ಯೆಗೆ ಸ್ಟರ್ಲಿಂಗ್ ಅಂದಾಜು

n ದೊಡ್ಡ ಸಂಖ್ಯೆಯಾದಾಗ ಸ್ಟರ್ಲಿಂಗ್ ಅಂದಾಜು ಎಂಬುದನ್ನು ಬಳಸಬಹುದು:

ಇದನ್ನು ಸಿದ್ಧಪಡಿಸಲು ಲಾಗರಿತಂ ಸಂಖ್ಯೆಯ ಅಪರಿಮಿತ ಸರಣಿಯನ್ನು ಬಳಸಲಾಗುತ್ತದೆ. ಮತ್ತೊಂದು ಅಸಮಾನತೆಯನ್ನೂ ಗಮನಿಸಿ:

ಶ್ರೀನಿವಾಸ ರಾಮಾನುಜಂ ಅವರು ಕೂಡಾ n! ಎಂಬುದಕ್ಕೆ ತಮ್ಮದೇ ಒಂದು ಅಂದಾಜು ನೀಡಿದ್ದಾರೆ (Ramanujan 1988)

ಅಥವಾ

ಅಥವಾ

  1. Ronald L. Graham, Donald E. Knuth, Oren Patashnik (1988) Concrete Mathematics, Addison-Wesley, Reading MA. ISBN 0-201-14236-8, p. 111
  2. N. L. Biggs, The roots of combinatorics, Historia Math. 6 (1979) 109−136
  3. Higgins, Peter (2008), Number Story: From Counting to Cryptography, New York: Copernicus, p. 12, ISBN 978-1-84800-000-1  says Krempe though.
  4. Cheng, Eugenia (2017-03-09). Beyond Infinity: An expedition to the outer limits of the mathematical universe (in ಇಂಗ್ಲಿಷ್). Profile Books. ISBN 9781782830818. 
  5. Conway, John H.; Guy, Richard (1998-03-16). The Book of Numbers (in ಇಂಗ್ಲಿಷ್). Springer Science & Business Media. ISBN 9780387979939. 
  6. Knuth, Donald E. (1997-07-04). The Art of Computer Programming: Volume 1: Fundamental Algorithms (in ಇಂಗ್ಲಿಷ್). Addison-Wesley Professional. ISBN 9780321635747. 
  7. "18.01 Single Variable Calculus, Lecture 37: Taylor Series". MIT OpenCourseWare. Fall 2006. Retrieved 2017-05-03. 
  8. Kardar, Mehran (2007-06-25). "Chapter 2: Probability". Statistical Physics of Particles (in English). Cambridge University Press. ISBN 9780521873420. 
  9. "18.01 Single Variable Calculus, Lecture 4: Chain rule, higher derivatives". MIT OpenCourseWare. Fall 2006. Retrieved 2017-05-03.