ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರ

ವಿಕಿಪೀಡಿಯ ಇಂದ
ಇಲ್ಲಿಗೆ ಹೋಗು: ಸಂಚರಣೆ, ಹುಡುಕು
ಅತಿ ಸರಳ ಹೈಡ್ರೋಕಾರ್ಬನ್‌ ಸಂಯುಕ್ತವಾದ ಮೀಥೇನ್‌ ಅಣುವಿನ ಸಂರಚನೆ

ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರ ವು ಹೈಡ್ರೋಕಾರ್ಬನ್‌ಗಳು ಮತ್ತು ಅವುಗಳ ರೂಪಾಂತರಗಳ ರಚನೆ, ಲಕ್ಷಣಗಳು, ಸಂಯೋಜನೆ, ಕ್ರಿಯೆ ಹಾಗೂ ಸಿದ್ಧತೆ (ಸಂಯೋಗ ಅಥವಾ ಇತರೆ ರೀತಿಯಾಗಿ) ಮುಂತಾದುವುಗಳ ವೈಜ್ಞಾನಿಕ ಅಧ್ಯಯನವನ್ನೊಳಗೊಂಡ ರಸಾಯನಶಾಸ್ತ್ರದೊಳಗಿನ ಪ್ರತ್ಯೇಕ ಶಾಖೆ. ಈ ಸಂಯುಕ್ತಗಳು ಜಲಜನಕ, ಸಾರಜನಕ, ಆಮ್ಲಜನಕ, ಹಾಲೋಜನ್‌ಗಳು ಹಾಗೂ ರಂಜಕ , ಸಿಲಿಕಾನ್‌ ಮತ್ತು ಗಂಧಕಗಳೂ ಸೇರಿದಂತೆ ಯಾವುದೇ ಸಂಖ್ಯೆಯ ಇತರೆ ಅಂಶಗಳನ್ನು ಹೊಂದಿರಬಹುದು.[೧][೨][೩]

ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳು ವೈವಿಧ್ಯಮಯ ರಚನೆಯನ್ನು ಹೊಂದಿದ್ದು, ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳಿಂದ ಪಡೆಯಬಹುದಾದ ಅನುಕೂಲಗಳ ವ್ಯಾಪ್ತಿ ಅಗಾಧ. ಅನೇಕ ಉತ್ಪನ್ನಗಳ ಮೂಲಾಧಾರ ಅಥವಾ ಪ್ರಮುಖ ಅಂಶಗಳಾಗಿರುವುದಲ್ಲದೇ (ಹೆಸರಿಸಬಹುದಾದ ಕೆಲವೆಂದರೆ ಬಣ್ಣಗಳು, ಪ್ಲಾಸ್ಟಿಕ್‌, ಆಹಾರ, ಸ್ಫೋಟಕಗಳು, ಔಷಧಸಾಮಗ್ರಿಗಳು, ಪೆಟ್ರೋಲಿಯಂ ರಾಸಾಯನಿಕಗಳು) ಕೆಲ ಅಪವಾದಗಳನ್ನು ಬಿಟ್ಟರೆ ಬಹುತೇಕ ಭೂಮಿಯ ಎಲ್ಲಾ ಜೀವ ಪ್ರಕ್ರಿಯೆಗಳಿಗೆ ಮೂಲಾಧಾರವಾಗಿವೆ.

ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರವು ಕೂಡಾ, ವಿಜ್ಞಾನದ ಇತರೆ ಶಾಖೆಗಳಂತೆಯೇ ನಿರ್ದಿಷ್ಟ ನಾವೀನ್ಯತೆಯ ಅಲೆಗಳೊಂದಿಗೆ ವಿಕಾಸಗೊಂಡಿದೆ. ಈ ನಾವೀನ್ಯತೆಗಳಿಗೆ ಪ್ರಾಯೋಗಿಕ ಪರಿಗಣನೆಗಳು ಹಾಗೂ ಸೈದ್ಧಾಂತಿಕ ನಾವೀನ್ಯತೆಗಳು ಪ್ರಚೋದನೆ ನೀಡಿವೆ. ಆದಾಗ್ಯೂ ಈ ಕ್ಷೇತ್ರವು ಪಾಲಿಮರ್‌ ವಿಜ್ಞಾನ, ಔಷಧೀಯ ರಸಾಯನಶಾಸ್ತ್ರ, ಹಾಗೂ ಕೃಷಿರಾಸಾಯನಿಕಗಳ ಉದ್ಯಮಗಳಲ್ಲಿನ ಬೃಹತ್‌ ಅನ್ವಯಗಳಿಂದಾಗಿ ಆರ್ಥಿಕ ಬಲವನ್ನು ಹೊಂದಿದೆ.

ಇತಿಹಾಸ[ಬದಲಾಯಿಸಿ]

ಫ್ರೆಡ್‌ರಿಕ್‌ ವೊಹ್ಲರ್‌

ಹತ್ತೊಂಬತ್ತನೇ ಶತಮಾನದ ಆರಂಭದಲ್ಲಿ, ರಸಾಯನಶಾಸ್ತ್ರಜ್ಞರು ಸಾಧಾರಣವಾಗಿ ಜೀವಿಗಳಿಂದ ಪಡೆಯುವ ಸಂಯುಕ್ತಗಳನ್ನು ಕೃತಕವಾಗಿ ಪಡೆಯಲು ಕಷ್ಟಸಾಧ್ಯವಾಗುವಷ್ಟು ವಿಪರೀತ ಸಂಕೀರ್ಣತೆಯನ್ನು ಹೊಂದಿವೆ ಎಂಬ ಆಲೋಚನೆ ಹೊಂದಿದ್ದರು. ಜೀವತತ್ವವಾದದ ಪ್ರಕಾರ, ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ವಸ್ತುಗಳು "ಜೀವಶಕ್ತಿ"ಯನ್ನು ಹೊಂದಿರುತ್ತವೆ. ಅವರು ಈ ಸಂಯುಕ್ತಗಳನ್ನು "ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ" ಎಂದು ಕರೆದು ಅಧ್ಯಯನಕ್ಕೆ ಸುಲಭವಾಗುವಂತಹಾ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ವಸ್ತುಗಳ ಮೇಲೆ ಕೇಂದ್ರೀಕೃತವಾಗಿ ತಮ್ಮ ಪರಿಶೋಧನೆಗಳನ್ನು ಆರಂಭಿಸಿದರು.[ಸಾಕ್ಷ್ಯಾಧಾರ ಬೇಕಾಗಿದೆ]

ಹತ್ತೊಂಬತ್ತನೇ ಶತಮಾನದ ಪ್ರಥಮಾರ್ಧ ಅವಧಿಯಲ್ಲಿ, ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳನ್ನು ವಾಸ್ತವಿಕವಾಗಿ ಪ್ರಯೋಗಶಾಲೆಯಲ್ಲಿ ಕೃತಕವಾಗಿ ಸೃಷ್ಟಿಸಬಹುದೆಂಬುದು ಸ್ಪಷ್ಟವಾಯಿತು. ೧೮೧೬ರ ವೇಳೆಗೆ ಮೈಕೆಲ್‌ ಚೆವ್ರೆಲ್‌ ಅನೇಕ ವಿಧದ ಕೊಬ್ಬಿನಂಶಗಳು ಹಾಗೂ ಕ್ಷಾರವಸ್ತುಗಳಿಂದ ಮಾಡಿದ ಸಾಬೂನುಗಳ ಅಧ್ಯಯನವನ್ನು ಆರಂಭಿಸಿದ್ದರು. ಅವರು ಕ್ಷಾರದೊಂದಿಗೆ ಸೇರಿಸಿದಾಗ ಸಾಬೂನು ಉತ್ಪಾದನೆಯಾಗುವಂತಹಾ ಬೇರೆ ಬೇರೆ ಆಮ್ಲಗಳನ್ನು ಪ್ರತ್ಯೇಕಿಸಿದರು. ಇವೆಲ್ಲವೂ ಪ್ರತ್ಯೇಕ ಸಂಯುಕ್ತಗಳಾದ ಕಾರಣ, (ರೂಢಿಗತವಾಗಿ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಮೂಲಗಳಿಂದ ಸಿಗುವ) ಅನೇಕ ಕೊಬ್ಬಿನಂಶದ ವಸ್ತುಗಳಲ್ಲಿ ರಾಸಾಯನಿಕ ಬದಲಾವಣೆ ಮಾಡಿ "ಜೀವಶಕ್ತಿ"ಯಿಲ್ಲದ ನವೀನ ಸಂಯುಕ್ತಗಳನ್ನು ಪಡೆಯಲು ಸಾಧ್ಯ ಎಂದು ನಿದರ್ಶನದ ಮೂಲಕ ತೋರಿಸಿದರು. ೧೮೨೮ರಲ್ಲಿ ಫ್ರೆಡ್‌ರಿಕ್‌ ವೊಹ್ಲರ್‌ರು ಮೂತ್ರದ ಅಂಶವಾದ ಯೂರಿಯಾ ಎಂಬ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ರಾಸಾಯನಿಕ (ಕಾರ್ಬಮೈಡ್‌)ವನ್ನು, ಅಜೈವಿಕ/ಅಸಾವಯವ ಅಮೋನಿಯಮ್‌‌ ಸೈನೇಟ್‌ನಿಂದ NH4OCN, ಉತ್ಪಾದಿಸಿದರು, ಈ ಪ್ರಕ್ರಿಯೆಯನ್ನು ಈಗ ವೊಹ್ಲರ್‌ ಸಂಶ್ಲೇಷಣೆಯೆಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ಇದೇ ಅವಧಿಯಲ್ಲಿ ಹಾಗೂ ನಂತರ ಕೂಡಾ ವೊಹ್ಲರ್‌ರು, ಜೀವ ಶಕ್ತಿ ಸಿದ್ಧಾಂತವನ್ನು ಅಸಿಂಧು ಎಂದು ಸಾಧಿಸಿದೆನೆಂದು ಹೇಳುವ ಎಚ್ಚರ ತೋರಿದರೂ, ಇತಿಹಾಸಕಾರರು ಇದನ್ನೊಂದು ನಿರ್ಣಾಯಕ ಘಟ್ಟವೆಂಬಂತೆ ಪರಿಗಣಿಸಿದರು.

೧೮೫೬ರಲ್ಲಿ ವಿಲಿಯಂ ಹೆನ್ರಿ ಪರ್ಕಿನ್‌, ಕ್ವಿನೈನ್‌ ಅನ್ನು ಉತ್ಪಾದಿಸಲು ಪ್ರಯತ್ನಿಸಿದಾಗ, ಆಕಸ್ಮಿಕವಾಗಿ ಪರ್ಕಿನ್‌ರ ಕೆನ್ನೀಲಿ ವರ್ಣ ಎಂದೇ ಈಗ ಪರಿಚಿತವಾಗಿರುವ, ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ವರ್ಣದ್ರವ್ಯವನ್ನು ಉತ್ಪಾದಿಸಿದಾಗ, ಅದರಿಂದ ಹರಿದ ಹಣದ ಹೊಳೆ ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರದಲ್ಲಿ ಆಸಕ್ತಿಯನ್ನು ಹೆಚ್ಚಿಸಿದ್ದು ಮತ್ತೊಂದು ಪ್ರಮುಖ ಮೈಲಿಗಲ್ಲಾಗಿತ್ತು.

ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರದಲ್ಲಾದ ನಿರ್ಣಾಯಕ ಪ್ರಗತಿಯೆಂದರೆ ೧೮೫೮ರಲ್ಲಿ ಫ್ರೆಡ್‌ರಿಕ್‌ ಆಗಸ್ಟ್‌ ಕೆಕುಲೆ ಹಾಗೂ ಆರ್ಚಿಬಾಲ್ಡ್‌ ಸ್ಕಾಟ್‌ ಕೂಪರ್‌ ಇಬ್ಬರೂ ಪ್ರತ್ಯೇಕವಾಗಿ ಏಕಕಾಲದಲ್ಲಿ ಸಿದ್ಧಪಡಿಸಿದ ರಾಸಾಯನಿಕ ಸಂರಚನೆಯ ಕಲ್ಪನೆ. ಇಬ್ಬರೂ ಸಂಯೋಗ ಸಾಮರ್ಥ್ಯ ನಾಲ್ಕನ್ನು ಹೊಂದಿರುವ ಇಂಗಾಲದ ಅಣುಗಳು ಪರಸ್ಪರ ಸಂಪರ್ಕಿಸಿಕೊಂಡು ಇಂಗಾಲದ ಜಾಲಕವನ್ನು ರೂಪಿಸಬಲ್ಲವು ಹಾಗೂ ಅಣುಗಳ ಬಂಧಕಶಕ್ತಿಯ ವಿವರಣಾತ್ಮಕ ವಿನ್ಯಾಸಗಳನ್ನು ಸಮರ್ಪಕ ರಾಸಾಯನಿಕ ಕ್ರಿಯೆಗಳ ಪರಿಣತ ಗ್ರಹಿಕೆಗಳ ಮೂಲಕ ಗ್ರಹಿಸಲು ಸಾಧ್ಯ ಎಂಬ ಅಭಿಪ್ರಾಯ ವ್ಯಕ್ತಪಡಿಸಿದ್ದರು.

ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರದ ಇತಿಹಾಸವು ಪೆಟ್ರೋಲಿಯಂನ ಆವಿಷ್ಕಾರ ಹಾಗೂ ಕುದಿಯುವ ಬಿಂದುವಿನ ವ್ಯಾಪ್ತಿಯ ಪ್ರಕಾರ ಭಿನ್ನಾಂಕಗಳಾಗಿ ಪ್ರತ್ಯೇಕಿಸುವುದರೊಂದಿಗೆ ಮುಂದುವರೆಯಿತು. ವಿವಿಧ ರಾಸಾಯನಿಕ ಕ್ರಿಯೆಗಳ ಮೂಲಕ ವಿವಿಧ ಸಂಯುಕ್ತ ನಮೂನೆಗಳು ಅಥವಾ ವಿಶಿಷ್ಟ ಸಂಯುಕ್ತಗಳ ಪರಿವರ್ತನೆಯ ಸಾಧ್ಯತೆಯು ಪೆಟ್ರೋಲಿಯಂ ರಸಾಯನಶಾಸ್ತ್ರವೆಂಬ ಶಾಖೆಯನ್ನು ರಚಿಸಿ ಅದರಿಂದಾಗಿ ಪೆಟ್ರೋಲಿಯಂ ರಾಸಾಯನಿಕ ಉದ್ಯಮದ ಹುಟ್ಟಿಗೆ ಕಾರಣವಾಯಿತು. ಈ ಉದ್ಯಮವು ಕೃತಕ ರಬ್ಬರ್‌ಗಳು, ವಿವಿಧ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಗೋಂದುಗಳು, ಲಕ್ಷಣಗಳನ್ನು ಬದಲಿಸಬಲ್ಲ ಪೆಟ್ರೋಲಿಯಂ ಸಂಯೋಜಕಗಳನ್ನು ಹಾಗೂ ಪ್ಲಾಸ್ಟಿಕ್‌ಅನ್ನು ಯಶಸ್ವಿಯಾಗಿ ಉತ್ಪಾದಿಸಿತು.

ಔಷಧ ಉದ್ಯಮವು ೧೯ನೇ ಶತಮಾನದ ಕೊನೆಯ ದಶಕದಲ್ಲಿ (ಆಸ್ಪಿರಿನ್‌ ಎಂದು ಜನಪ್ರಿಯವಾಗಿರುವ) ಅಸಿಟೈಲ್‌ಸಲಿಸೈಕ್ಲಿಕ್‌ ಆಮ್ಲದ ಉತ್ಪಾದನೆಯನ್ನು ಬೇಯರ್‌ ಸಂಸ್ಥೆಯು ಜರ್ಮನಿಯಲ್ಲಿ ಆರಂಭಿಸಿದಾಗ ಆರಂಭವಾಯಿತು. ಪ್ರಥಮ ಬಾರಿಗೆ ಆರ್ಸೆಫೆನಾಮೈನ್‌(ಸಾಲ್ವರ್ಸನ್‌)ನೊಂದಿಗೆ ಔಷಧಿಯೊಂದನ್ನು ವ್ಯವಸ್ಥಿತವಾಗಿ ಸುಧಾರಿಸಲಾಯಿತು. ಅಟಾಕ್ಸಿಲ್‌ನ ಅಪಾಯಕಾರಿ ವಿಷದ ಅನೇಕ ರೂಪಾಂತರಗಳನ್ನು ಪೌಲ್‌ ಎಹ್ರ್‌ಲಿಚ್‌ ಹಾಗೂ ಆತನ ತಂಡವು ಪರೀಕ್ಷಿಸಿ ಅತ್ಯುತ್ತಮ ಪ್ರಭಾವೀ ಹಾಗೂ ವಿಷಲಕ್ಷಣಗಳುಳ್ಳ ಸಂಯುಕ್ತವನ್ನು ಉತ್ಪಾದನೆಗೆ ಆಯ್ಕೆ ಮಾಡಿತು.

ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಕ್ರಿಯೆಗಳು ಹಾಗೂ ಅನ್ವಯಗಳ ಮುಂಚಿನ ಅವಕಾಶಗಳು ಬಹುಮಟ್ಟಿಗೆ ಅದೃಷ್ಟದವಾಗಿದ್ದರೂ, ೧೯ನೇ ಶತಮಾನದ ಉತ್ತರಾರ್ಧದಲ್ಲಿ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳ ವ್ಯವಸ್ಥಿತ ಅಧ್ಯಯನಗಳು ನಡೆದವು. ೨೦ನೇ ಶತಮಾನದ ಆರಂಭದಲ್ಲಿ, ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರದ ಪ್ರಗತಿಯು ವಿಪರೀತ ಸಂಕೀರ್ಣತೆಯ ಅಣುಗಳ ಸಮನ್ವಯವನ್ನು ಬಹುಹಂತದ ಕ್ರಿಯೆಗಳ ಮೂಲಕ ಸಾಧಿಸಲು ಅನುವು ಮಾಡಿಕೊಟ್ಟಿತು. ಸಮಕಾಲಿಕವಾಗಿ, ಪಾಲಿಮರ್‌ಗಳು ಹಾಗೂ ಕಿಣ್ವಗಳು ಅತಿದೊಡ್ಡ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಅಣುಗಳು ಹಾಗೂ ಪೆಟ್ರೋಲಿಯಂ ಜೈವಿಕ ಮೂಲದ್ದು ಎಂಬುದು ಪತ್ತೆಯಾದವು. ಯಾವುದೇ ಸಂಯುಕ್ತಕ್ಕೆ ಹೊಸದಾದ ಸಮನ್ವಯದ ಹಾದಿಗಳನ್ನು ಹುಡುಕುವ ಪ್ರಕ್ರಿಯೆಗೆ ಸಂಪೂರ್ಣ ಸಮನ್ವಯ ಎನ್ನಲಾಯಿತು. ಸಂಕೀರ್ಣ ನೈಸರ್ಗಿಕ ಸಂಯುಕ್ತಗಳ ಸಂಪೂರ್ಣ ಸಮನ್ವಯವು ಯೂರಿಯಾದ ಮೂಲಕ ಆರಂಭವಾಗಿ ಹೆಚ್ಚಿನ ಸಂಕೀರ್ಣತೆಯ ಗ್ಲೂಕೋಸ್‌ ಹಾಗೂ ಟರ್ಪಿನಾಲ್‌ಗಳೊಂದಿಗೆ ಮುಂದುವರೆಯಿತು. ೧೯೦೭ರಲ್ಲಿ, ಸಂಪೂರ್ಣ ಸಮನ್ವಯವು ಗುಸ್ತಾಫ್‌ ಕೊಂಪ್ಪಾರು ಕರ್ಪೂರದೊಂದಿಗೆ ಸಂಪೂರ್ಣ ಸಮನ್ವಯದ ವಾಣಿಜ್ಯೀಕರಣ ಮಾಡಿದರು. ಔಷಧೀಯ ಅನುಕೂಲಗಳು ಗಮನಾರ್ಹ ಪ್ರಮಾಣದಲ್ಲಿದ್ದವು, ಉದಾಹರಣೆಗೆ ಕೊಲೆಸ್ಟರಾಲ್‌-ಸಂಬಂಧಿ ಸಂಯುಕ್ತಗಳು ಸಂಕೀರ್ಣ ಮಾನವ ಹಾರ್ಮೋನ್‌ಗಳು ಹಾಗೂ ಅವುಗಳ ರೂಪಾಂತರಗಳ ಸಮನ್ವಯಕ್ಕೆ ಮಾರ್ಗ ತೆರೆದಿವೆ. ೨೦ನೇ ಶತಮಾನದ ಆರಂಭದಿಂದ, ಲೈಸರ್ಜಿಕ್‌ ಆಮ್ಲ ಹಾಗೂ B12 ಜೀವಸತ್ವದಂತಹಾ ಸಂಪೂರ್ಣ ಸಮನ್ವಯಗಳ ಸಂಕೀರ್ಣತೆಯು ಹೆಚ್ಚುತ್ತಿದೆ. ಇಂದಿನ ಗುರಿಗಳು ಅಸಮ್ಮಿತಿಯ ಸಮನ್ವಯಗಳೊಂದಿಗೆ ಸೂಕ್ತವಾಗಿ ಸಮನ್ವಯಗೊಳಿಸಲೇಬೇಕಾದ ಹತ್ತಾರು ಸ್ಟೀರಿಯೋಜೆನಿಕ್‌ ಕೇಂದ್ರಗಳನ್ನು ಹೊಂದಿವೆ.

ಜೀವಿಗಳ ರಚನೆ ಹಾಗೂ, ವಿಟ್ರೋದಲ್ಲಿನ ಪರಸ್ಪರ ವರ್ತನೆ ಹಾಗೂ ಜೀವಿಗಳ ಆಂತರಿಕ ವ್ಯವಸ್ಥೆಗಳ ರಸಾಯನಶಾಸ್ತ್ರವಾದ ಜೈವಿಕರಸಾಯನಶಾಸ್ತ್ರವು ಕೇವಲ ೨೦ನೇ ಶತಮಾನದಲ್ಲಷ್ಟೇ ಆರಂಭವಾಗಿದೆ, ಹೆಚ್ಚಿನ ವ್ಯಾಪ್ತಿಯ ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರದ ಹೊಸದೊಂದು ಅಧ್ಯಾಯವನ್ನೇ ತೆರೆದಿದೆ. ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರದಂತೆಯೇ, ಜೈವಿಕರಸಾಯನಶಾಸ್ತ್ರವು ಕೂಡಾ ಇಂಗಾಲವನ್ನು ಹೊಂದಿರುವ ಸಂಯುಕ್ತಗಳ ಮೇಲೆ ಕೇಂದ್ರೀಕೃತವಾಗಿದೆ.

ವೈಶಿಷ್ಟ್ಯಗಳ ವಿವರಣೆ[ಬದಲಾಯಿಸಿ]

ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳು ಬಹುಮಟ್ಟಿಗೆ ಮಿಶ್ರಣಗಳಾಗಿರುವುದರಿಂದ, ಅವುಗಳ ಶುದ್ಧತೆಯನ್ನು ಅಳೆಯಲು ಅನೇಕ ತಂತ್ರಗಳನ್ನು ಮಾಡಲಾಗಿದೆ, ಪ್ರಮುಖವಾಗಿ HPLC ಹಾಗೂ ಅನಿಲ ವರ್ಣರೇಖನದಂತಹ ವರ್ಣರೇಖನ ತಂತ್ರಗಳನ್ನು ಅಭಿವೃದ್ಧಿಪಡಿಸಲಾಗಿದೆ. ಸಾಂಪ್ರದಾಯಿಕ ಪ್ರತ್ಯೇಕಿಸುವ ವಿಧಾನಗಳೆಂದರೆ ಸಾಂದ್ರೀಕರಣ, ಸ್ಫಟಿಕೀಕರಣ ಹಾಗೂ ದ್ರಾವಕ ನಿಗಮನ.

ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳು "ತೇವ ವಿಧಾನಗಳೆಂದು" ಕರೆಯಲ್ಪಡುವ ವಿವಿಧ ಸಾಂಪ್ರದಾಯಿಕ ರಾಸಾಯನಿಕ ಪರೀಕ್ಷೆಗಳಲ್ಲಿ ತಮ್ಮ ವೈಶಿಷ್ಟ್ಯಗಳನ್ನು ತೋರುತ್ತಿದ್ದರೆ, ಪ್ರಸ್ತುತ ಅಂತಹಾ ಪರೀಕ್ಷೆಗಳನ್ನು ರೋಹಿತ ದರ್ಶನ ಅಥವಾ ಇನ್ನಿತರ ಗಣಕೀಕೃತ ವಿಶ್ಲೇಷಣಾ ವಿಧಾನಗಳ ಮೂಲಕ ನಡೆಸಲಾಗುತ್ತಿದೆ.[೪] ಬಳಕೆಯ ಅಂದಾಜಿನ ಕ್ರಮದ ಪ್ರಕಾರ ಪಟ್ಟಿ ಮಾಡಬಹುದಾದ ಪ್ರಮುಖ ವಿಶ್ಲೇಷಣಾ ವಿಧಾನಗಳೆಂದರೆ:

  • ಅಣುಕಾಂತೀಯ ಅನುರಣನ (NMR) ರೋಹಿತದರ್ಶನವು ಅನ್ಯೋನ್ಯಾವಲಂಬನೆಯ ರೋಹಿತದರ್ಶನ ಬಳಸಿಕೊಂಡು ಸ್ಟೀರಿಯೋರಸಾಯನಶಾಸ್ತ್ರ ಅಣು ಸಂಯೋಜಕತೆಯ ಸಂಪೂರ್ಣ ಹಂಚಿಕೆಯನ್ನು ಮಾಡಲು ಅವಕಾಶ ನೀಡುವ ಬಹುಸಾಮಾನ್ಯವಾದ ತಂತ್ರವಾಗಿದೆ. ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರದ ಮೂಲ ಅಣುಗಳಾದ - ಜಲಜನಕ ಹಾಗೂ ಇಂಗಾಲಗಳು- ಅನುಕ್ರಮವಾಗಿ 1H ಹಾಗೂ 13C NMR-ಪ್ರತಿಕ್ರಿಯಾತ್ಮಕ ಸಮಸ್ಥಾನಿಗಳಲ್ಲಿ ನೈಸರ್ಗಿಕವಾಗಿಯೇ ಲಭ್ಯವಿರುತ್ತವೆ.
  • ಧಾತುರೂಪಿ ವಿಶ್ಲೇಷಣೆ : ಅಣುವಿನ ಧಾತುರೂಪಿ ಸಂಯೋಜನೆಯನ್ನು ತಿಳಿದುಕೊಳ್ಳುವ ವಿನಾಶಕ ವಿಧಾನವಾಗಿದೆ. ಕೆಳಗೆ ರಾಶಿ ರೋಹಿತ ಮಾಪನವನ್ನೂ ನೋಡಿ..
  • ರಾಶಿ ರೋಹಿತಮಾಪನವು ಸಂಯುಕ್ತವೊಂದರ ಅಣುತೂಕವನ್ನು ಸೂಚಿಸುತ್ತದೆ, ಹಾಗೂ ವಿಘಟನ ಮಾದರಿಗಳಿಂದ ಅದರ ರಚನೆಯನ್ನು ಸೂಚಿಸುತ್ತದೆ. ಉಚ್ಚ ಅಭಿನಿವೇಶ ರಾಶಿ ರೋಹಿತಮಾಪನವು ಸಾಮಾನ್ಯವಾಗಿ ಸಂಯುಕ್ತವೊಂದರ ನಿಖರ ಸೂತ್ರವನ್ನು ಗುರುತಿಸಬಲ್ಲದಾದುದರಿಂದ ಧಾತುರೂಪಿ ವಿಶ್ಲೇಷಣೆಯ ಬದಲಿಗೆ ಅದನ್ನು ಬಳಸಲಾಗುತ್ತದೆ. ಹಿಂದೆ, ರಾಶಿ ರೋಹಿತಮಾಪನವು ಬಾಷ್ಪಶೀಲತೆ ಇರುವ ತಟಸ್ಥ ಅಣುಗಳ ಮಟ್ಟಿಗೆ ಮಾತ್ರ ಸೀಮಿತವಾಗಿತ್ತು, ಆದರೆ ಆಧುನಿಕ ಅಯಾನೀಕರಣ ವಿಧಾನಗಳಿಂದ ಬಹುತೇಕ ಯಾವುದೇ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತದ "ರಾಶಿ ವಿವರ" ಪಡೆಯಲು ಸಾಧ್ಯವಿದೆ.
  • ಸ್ಫಟಿಕೀಕರಣವು ಅಣು ಜ್ಯಾಮಿತಿಯನ್ನು ಪತ್ತೆ ಹಚ್ಚಲು ಬಳಸುವ ಸ್ಪಷ್ಟ ವಿಧಾನವಾಗಿದೆ, ಆದರೆ ವಸ್ತುವಿನ ಬಿಡಿ ಸ್ಫಟಿಕಗಳು ಲಭ್ಯವಿರಬೇಕು ಹಾಗೂ ಸ್ಫಟಿಕವು ವಸ್ತುವನ್ನು ಪ್ರತಿನಿಧಿಸುವಂತಿರಬೇಕು ಎಂಬುದೊಂದು ಮಿತಿಯಿದೆ. ಸೂಕ್ತ ಸ್ಫಟಿಕವು ಲಭ್ಯವಿದ್ದರೆ ಕೆಲ ಗಂಟೆಗಳಲ್ಲೇ ರಚನೆಯನ್ನು ನಿರ್ಣಯಿಸಬಲ್ಲ ಉಚ್ಚ ಸ್ವಯಂಚಲಿ ತಂತ್ರಾಂಶಗಳು ಲಭ್ಯವಿವೆ.

ಸಾಂಪ್ರದಾಯಿಕ ರೋಹಿತದರ್ಶಕ ವಿಧಾನಗಳಾದ ಅವಗೆಂಪು ರೋಹಿತದರ್ಶನ, ದ್ಯುತಿ ಭ್ರಮಣ, UV/VIS ರೋಹಿತದರ್ಶನಗಳು ಸಂಯುಕ್ತಗಳ ನಿರ್ದಿಷ್ಟ ವರ್ಗಕ್ಕೆ ಮಾತ್ರ ಉಪಯುಕ್ತವಾದ ರಚನೆಯ ಬಗ್ಗೆ ಅನಿರ್ದಿಷ್ಟ ಮಾಹಿತಿಯನ್ನು ಮಾತ್ರ ನೀಡುತ್ತವೆ.

ವಿಶ್ಲೇಷಕ ರಸಾಯನಶಾಸ್ತ್ರದ ಲೇಖನದಲ್ಲಿ ಹೆಚ್ಚಿನ ವಿಧಾನಗಳ ಬಗ್ಗೆ ವಿವರಿಸಲಾಗಿದೆ.

ಗುಣಲಕ್ಷಣಗಳು[ಬದಲಾಯಿಸಿ]

ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳ ಆಸಕ್ತಿದಾಯಕ ಭೌತಿಕ ಲಕ್ಷಣಗಳು ಪರಿಮಾಣಾತ್ಮಕ ಹಾಗೂ ಗುಣಾತ್ಮಕ ವೈಶಿಷ್ಟ್ಯಗಳನ್ನು ಹೊಂದಿವೆ. ಪರಿಮಾಣಾತ್ಮಕ ಮಾಹಿತಿಗಳಲ್ಲಿ ಕರಗುವ ಬಿಂದು,ಕುದಿಯುವ ಬಿಂದು ಹಾಗೂ ವಕ್ರೀಭವನ ಬಿಂದುಗಳು ಸೇರಿವೆ. ಗುಣಾತ್ಮಕ ಲಕ್ಷಣಗಳಲ್ಲಿ ವಾಸನೆ,ವಿಲಯನತ್ವ ಹಾಗೂ ವರ್ಣಗಳು ಸೇರಿವೆ.

ಕರಗುವ ಹಾಗೂ ಕುದಿಯುವ ಲಕ್ಷಣಗಳು[ಬದಲಾಯಿಸಿ]

ಅನೇಕ ಅಜೈವಿಕ ವಸ್ತುಗಳ ಹಾಗಲ್ಲದೇ, ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳು ಸಾಮಾನ್ಯವಾಗಿ ಕರಗುತ್ತವೆ ಹಾಗೂ ಕೆಲವು ಕುದಿಯುತ್ತವೆ. ಹಿಂದೆ, ಕರಗುವ ಬಿಂದು (m.p.) ಹಾಗೂ ಕುದಿಯುವ ಬಿಂದುಗಳು (b.p.) ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳ ಶುದ್ಧತೆ ಹಾಗೂ ಸ್ವರೂಪವನ್ನು ಅರಿಯುವ ನಿರ್ಣಾಯಕ ಮಾಹಿತಿಗಳನ್ನು ನೀಡುತ್ತಿದ್ದವು. ಕರಗುವ ಹಾಗೂ ಕುದಿಯುವ ಬಿಂದುಗಳು ಅಣುಗಳ ಧೃವೀಯತೆ ಹಾಗೂ ಅಣುತೂಕಗಳ ಮೇಲೆ ಆಧಾರಿತವಾಗಿವೆ. ಕೆಲ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳು, ವಿಶೇಷವಾಗಿ ಅನುರೂಪಿಗಳು, ಉದ್ಧೃತವಾಗಿರುತ್ತವೆ, ಅಂದರೆ ಅವು ಕರಗದೇ ಆವಿಯಾಗುತ್ತವೆ. ಉದ್ಧೃತವಾಗಬಲ್ಲ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತದ ಜನಪ್ರಿಯ ಉದಾಹರಣೆಯೆಂದರೆ ನುಸಿಗುಳಿಗೆಯಲ್ಲಿನ ವಾಸನಾದ್ರವ್ಯವಾದ ಪ್ಯಾರಾ-ಡೈಕ್ಲೋರೋಬೆಂಜೀನ್‌. ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳು 300 °Cಗಿಂತ ಹೆಚ್ಚಿನ ತಾಪಮಾನದಲ್ಲಿ ಹೆಚ್ಚಿನ ಮಟ್ಟದ ಸ್ಥಿರತೆ ಕಾಪಾಡಿಕೊಳ್ಳಲಾರವಾದರೂ, ಕೆಲವು ಅಪವಾದಗಳೂ ಇವೆ.

ಬಣ್ಣ[ಬದಲಾಯಿಸಿ]

ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳು ಸಾಧಾರಣವಾಗಿ ವರ್ಣರಹಿತ ಇಲ್ಲವೇ ಬೆಳ್ಳಗಿರುತ್ತವೆ. ಆದರೆ ಅನೇಕ ನಿಕಟ ಬಂಧಕಗಳನ್ನು ಹೊಂದಿರುವ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳ ವಿಚಾರದಲ್ಲಿ ಸನ್ನಿವೇಶ ಬೇರೆಯೇ ಇದೆ. ದ್ವಿಬಂಧಕಗಳು "ಸಂಯೋಗ"ಗೊಂಡಿರುವ ಸಂಯುಕ್ತಗಳು ಕಡುವರ್ಣದವಾಗಿರಬಹುದು. ಜೈವಿಕ ವರ್ಣದ್ರವ್ಯಗಳಾದ ಕೆರೊಟೀನ್‌ ಹಾಗೂ ಹೀಮ್‌ಗಳು "ಸಂಯೋಜನೆ" ಹಾಗೂ ವರ್ಣಗಳ ನಡುವಿನ ಸಂಬಂಧವನ್ನು ವಿಷದೀಕರಿಸುತ್ತವೆ. ಅಶುದ್ಧ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳು ಹಾಗೂ ಅನೇಕ ಜೈವಿಕ ವಸ್ತುಗಳು ಗಾಢವರ್ಣದ ಕಲ್ಮಶಗಳ ಉಪಸ್ಥಿತಿಯನ್ನು ತೋರುವಂತೆ ಹಳದಿ ಇಲ್ಲವೇ ಕಂದು ವರ್ಣದವಾಗಿರುತ್ತವೆ.

ವಿಲಯನತ್ವ[ಬದಲಾಯಿಸಿ]

ತಟಸ್ಥ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳು ನೀರಿನಿಂದ ಒದ್ದೆಯಾಗಲಾರವು, ಅಂದರೆ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ದ್ರಾವಕಗಳಿಗಿಂತ ನೀರಿನಲ್ಲಿ ಕಡಿಮೆ ಕರಗುತ್ತವೆ. ಇದಕ್ಕೆ ಅಪವಾದವೆಂದರೆ ಅಯಾನೀಕರಿಸಬಲ್ಲ ಗುಂಪುಗಳನ್ನು ಹೊಂದಿದ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳು ಹಾಗೂ ಜಲಜನಕ ಬಂಧಕವಾಗುವ ಅಲ್ಪ ಅಣುತೂಕದ ಆಲ್ಕೋಹಾಲ್‌ಗಳು, ಅಮೈನ್‌ಗಳು, ಹಾಗೂ ಕಾರ್ಬಾಕ್ಸಿಲ್‌ ಆಮ್ಲಗಳು. ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳು ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ದ್ರಾವಕಗಳಲ್ಲಿ ಸಾಮಾನ್ಯವಾಗಿ ಕರಗಬಲ್ಲವು. ಈಥರ್‌ ಅಥವಾ ಈಥೈಲ್‌ ಆಲ್ಕೋಹಾಲ್‌ಗಳಂತಹಾ ಶುದ್ಧ ವಸ್ತುಗಳು ಅಥವಾ ಮಿಶ್ರಣಗಳು, ಅನೇಕ ಪೆಟ್ರೋಲಿಯಂ ಈಥರ್‌ಗಳು ಹಾಗೂ ಶ್ವೇತ ಮದ್ಯಸಾರದಂತಹಾ ಮೇಣದ ದ್ರಾವಕ, ಅಥವಾ ಶುದ್ಧ ಅಥವಾ ಮಿಶ್ರಿತ ಪೆಟ್ರೋಲಿಯಂನಿಂದ ಪಡೆದ ಅನೇಕ ಶುದ್ಧ ಅಥವಾ ಮಿಶ್ರಿತ ಅಥವಾ ಸುಗಂಧಿತ ದ್ರಾವಕಗಳು ಅಥವಾ ಕೀಲೆಣ್ಣೆ ಅಂಶಗಳನ್ನು ಭೌತಿಕ ಪ್ರತ್ಯೇಕತೆ ಅಥವಾ ರಾಸಾಯನಿಕ ಪರಿವರ್ತನೆಗಳ ಮೂಲಕ ಪಡೆಯುವ ದ್ರಾವಕಗಳು. ಅನೇಕ ದ್ರಾವಕಗಳು ದ್ರಾವಕದ ರೀತಿಯ ಮೇಲೆ ಆಧಾರಿತವಾಗಿ ಹಾಗೂ ಲಭ್ಯವಿದ್ದರೆ ಕಾರ್ಯಸಂಬಂಧಿ ವಿವಿಧ ಮಟ್ಟದ ವಿಲಯನತ್ವವನ್ನು ಹೊಂದಿರುತ್ತವೆ.

ಘನಸ್ಥಿತಿ ಲಕ್ಷಣಗಳು[ಬದಲಾಯಿಸಿ]

ಅನೇಕ ವಿಶೇಷ ಲಕ್ಷಣಗಳು ಅನ್ವಯಗಳ ಮೇಲೆ ಆಧಾರಿತವಾಗಿ ಆಸಕ್ತಿದಾಯಕವಾಗಿರುತ್ತವೆ, e.g. ಪೀಜೋವಿದ್ಯುತ್‌, ವಿದ್ಯುತ್‌ ವಾಹಕತ್ವ (ನೋಡಿ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಲೋಹಗಳು), ಹಾಗೂ ವಿದ್ಯುತ್‌-ದ್ಯುತಿಯಂತಹಾ (e.g. ಅರೇಖೀಯ ದೃಷ್ಟಿಶಾಸ್ತ್ರ) ಉಷ್ಣ-ಯಾಂತ್ರಿಕ ಹಾಗೂ ವಿದ್ಯುತ್‌-ಯಾಂತ್ರಿಕ ಲಕ್ಷಣಗಳು. ಚಾರಿತ್ರಿಕ ಕಾರಣಗಳಿಗೋಸ್ಕರ, ಈ ಲಕ್ಷಣಗಳು ಪಾಲಿಮರ್‌ ವಿಜ್ಞಾನ ಹಾಗೂ ವಸ್ತುವಿಜ್ಞಾನ ಕ್ಷೇತ್ರಗಳ ಪ್ರಮುಖ ವಿಷಯಗಳಾಗಿವೆ.

ಪರಿಭಾಷೆ[ಬದಲಾಯಿಸಿ]

ಒಂದೇ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಕ್ಕೆ ಅನೇಕ ಹೆಸರುಗಳು ಹಾಗೂ ವರ್ಣನೆಗಳು.‎

ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳ ಹೆಸರುಗಳು ಒಂದೋ ಕ್ರಮಾತ್ಮಕವಾಗಿ, ತರ್ಕನಿಯಮಾನುಸಾರವಾಗಿದ್ದು ಇಲ್ಲವೇ ಕ್ರಮವಿಲ್ಲದೇ ಅನೇಕ ಸಂಪ್ರದಾಯಗಳನ್ನು ಪಾಲಿಸಿ ನೀಡಲಾಗುತ್ತದೆ. ಕ್ರಮಾತ್ಮಕ ಪರಿಭಾಷೆಯು IUPACಯ ಶಿಫಾರಸುಗಳಿಗೆ ಬದ್ಧವಾಗಿರುತ್ತದೆ. ಕ್ರಮಾತ್ಮಕ ಪರಿಭಾಷೆಯು ಆಸಕ್ತಿಯ ಅಣುವಿನ ಮೂಲರಚನೆಯ ಹೆಸರಿನಿಂದ ಆರಂಭವಾಗುತ್ತದೆ. ಮೂಲರಚನೆಯ ಹೆಸರನ್ನು ನಂತರ ಪೂರ್ವಪ್ರತ್ಯಯ, ಅಂತ್ಯಪ್ರತ್ಯಯ ಹಾಗೂ ಸಂಖ್ಯೆಗಳನ್ನು ಸೇರಿಸಿ ರಚನೆಯನ್ನು ಸೂಚಿಸುವಂತೆ ಬದಲಿಸಲಾಗುತ್ತದೆ. ದಶಲಕ್ಷಗಳಷ್ಟು ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳು ತಿಳಿದಿರುವಾಗ, ಕ್ರಮಾತ್ಮಕ ಹೆಸರುಗಳ ಕಟ್ಟುನಿಟ್ಟು ಪಾಲನೆ ತೊಡಕಾಗಬಲ್ಲದು. ಆದ್ದರಿಂದ, IUPAC ಶಿಫಾರಸುಗಳನ್ನು ಸರಳ ಸಂಯುಕ್ತಗಳಿಗೆ ಮಾತ್ರ ಬಳಸಿ, ಸಂಕೀರ್ಣ ಪರಮಾಣುಗಳಿಗೆ ಬಳಸಲಾಗುವುದಿಲ್ಲ. ಕ್ರಮಾತ್ಮಕ ನಾಮಕರಣವನ್ನು ಬಳಸಲು ಸಂರಚನೆ ಹಾಗೂ ಮೂಲ ಸಂರಚನೆಗಳ ಬಗ್ಗೆ ತಿಳಿದಿರಬೇಕಾದ್ದು ಅತ್ಯವಶ್ಯ. ಮೂಲ ಸಂರಚನೆಗಳೆಂದರೆ ಬದಲಿಕೆಯಿಲ್ಲದ ಹೈಡ್ರೋಕಾರ್ಬನ್‌ಗಳು, ವಿಭಿನ್ನಆವರ್ತನೆ, ಹಾಗೂ ಏಕಚಟುವಟಿಕಾತ್ಮಕ ರೂಪಾಂತರಗಳೂ ಸೇರಿವೆ.

ಕ್ರಮವಲ್ಲದ ಪರಿಭಾಷೆಯು ಕನಿಷ್ಟ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ರಸಾಯನಶಾಸ್ತ್ರ ತಜ್ಞರಿಗಾದರೂ ಸರಳ ಹಾಗೂ ಸ್ಪಷ್ಟವಾಗಿರುತ್ತವೆ. ಕ್ರಮವಲ್ಲದ ಹೆಸರುಗಳು ಸಂಯುಕ್ತದ ಸಂರಚನೆಯನ್ನು ಸೂಚಿಸುವುದಿಲ್ಲ. ಕ್ರಮವಲ್ಲದ ಹೆಸರುಗಳು ಬಹಳಷ್ಟು ಮಟ್ಟಿಗೆ ನೈಸರ್ಗಿಕ ಉತ್ಪನ್ನಗಳನ್ನು ಒಳಗೊಂಡಂತೆ ಸಂಕೀರ್ಣ ಪರಮಾಣುಗಳಿಗೆ ಸಮಾನವಾಗಿರುತ್ತವೆ. ಆದ್ದರಿಂದ, ಕ್ರಮವಿಲ್ಲದ ಹೆಸರನ್ನು ಹೊಂದಿರುವ ಲೈಸರ್ಜಿಕ್‌ ಆಮ್ಲ ಡೈಈಥೈಲಮೈಡ್‌ ಅನ್ನು ಕ್ರಮಾತ್ಮಕವಾಗಿ (6aR,9R)-N,N-ಡೈಈಥೈಲ್-7-ಮೀಥೈಲ್-4,6,6a,7,8,9-ಹೆಕ್ಸಾಹೈಡ್ರೋಇಂಡೋಲೋ-[4,3-fg] ಕ್ವಿನೋಲಿನ್-9-ಕಾರ್ಬಾಕ್ಸಮೈಡ್ ಎಂದು ಹೆಸರಿಸಲಾಗಿದೆ.

ಹೆಚ್ಚಿದ ಗಣಕೀಕರಣದಿಂದಾಗಿ ಗಣಕ/ಯಂತ್ರಗಳು ಬಳಸಲುದ್ದೇಶಿಸಿದ ಇತರೆ ನಾಮಕರಣ ವಿಧಾನಗಳು ವಿಕಾಸಗೊಂಡಿವೆ. ಎರಡು ಜನಪ್ರಿಯ ಮಾದರಿಗಳೆಂದರೆ SMILES ಹಾಗೂ InChI.

ರಚನಾತ್ಮಕ ರೇಖಾ/ಚಿತ್ರಗಳು[ಬದಲಾಯಿಸಿ]

ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಪರಮಾಣುಗಳನ್ನು ಚಿತ್ರಗಳ ಅಥವಾ ಸಂರಚನಾ ಸೂತ್ರಗಳು ಹಾಗೂ ಚಿತ್ರ ಹಾಗೂ ರಾಸಾಯನಿಕ ಚಿಹ್ನೆಗಳ ಸಂಯೋಜನೆಯ ಮೂಲಕ ಸಾಮಾನ್ಯವಾಗಿ ವಿವರಿಸಲಾಗುತ್ತದೆ. ರೇಖೆ-ಕೋನ ಸೂತ್ರವು ಸರಳ ಹಾಗೂ ಸ್ಪಷ್ಟವಾಗಿದೆ. ಈ ವ್ಯವಸ್ಥೆಯಲ್ಲಿ ಅಂತ್ಯಬಿಂದುಗಳು ಹಾಗೂ ಪ್ರತಿರೇಖೆಯ ಛೇದನಗಳು ಒಂದು ಇಂಗಾಲ ಹಾಗೂ ಜಲಜನಕದ ಪರಮಾಣುಗಳನ್ನು ಸ್ಫುಟವಾಗಿ ಲೇಖಿಸಬಹುದು ಅಥವಾ ಸಂಯೋಗ ಸಾಮರ್ಥ್ಯ ನಾಲ್ಕನ್ನು ಹೊಂದಿರುವ ಇಂಗಾಲದ ಉಪಸ್ಥಿತಿಯಿಂದ ಅವುಗಳಿವೆ ಎಂದು ಅಂದಾಜಿಸಬಹುದು. ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳನ್ನು ಚಿತ್ರಗಳ ಮೂಲಕ ಸೂಚಿಸುವುದು ಎಲ್ಲಾ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳಲ್ಲಿ ಇಂಗಾಲವು ನಾಲ್ಕು ಬಂಧಕಗಳನ್ನು ಹೊಂದಿದ್ದು, ಆಮ್ಲಜನಕ ಎರಡು, ಜಲಜನಕ ಒಂದು, ಹಾಗೂ ಸಾರಜನಕ ಮೂರನ್ನು ಹೊಂದಿರುತ್ತದೆ ಎಂಬ ವಿಚಾರದಿಂದ ಸರಳವಾಗಿದೆ.

ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳ ವರ್ಗೀಕರಣ[ಬದಲಾಯಿಸಿ]

ಕಾರ್ಯಸಂಬಂಧಿ ಗುಂಪುಗಳು[ಬದಲಾಯಿಸಿ]

ಕಾರ್ಬೋಆಕ್ಸಿಲಿಕ್‌ ಆಮ್ಲಗಳ ಕುಟುಂಬವು ಕಾರ್ಬಾಕ್ಸಿಲ್‌ (-COOH) ಕಾರ್ಯಕಾರಿ ಗುಂಪನ್ನು ಹೊಂದಿರುತ್ತದೆ. ಅಸೆಟಿಕ್‌ ಆಮ್ಲವು ಒಂದು ಉದಾಹರಣೆ.

ಕಾರ್ಯಸಂಬಂಧಿ ಗುಂಪುಗಳ ಕಲ್ಪನೆಯು ಸಂರಚನೆಗಳನ್ನು ವರ್ಗೀಕರಿಸಲು ಹಾಗೂ ಲಕ್ಷಣಗಳನ್ನು ಅಂದಾಜಿಸಲು ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರದ ಕೇಂದ್ರವಾಗಿದೆ. ಕಾರ್ಯಸಂಬಂಧಿ ಗುಂಪು ಎಂದರೆ ಪರಮಾಣು ಘಟಕವಾಗಿದ್ದು ಕಾರ್ಯಸಂಬಂಧಿ ಗುಂಪಿನ ಕಾರ್ಯಶೈಲಿಯನ್ನು ಒಂದು ಮಿತಿಯಲ್ಲಿ ಕೆಲ ವಿಧದ ಪರಮಾಣುಗಳಲ್ಲಿ ಸಮಾನವಾಗಿರುತ್ತದೆ ಎಂದು ಅಂದಾಜಿಸಲಾಗಿರುತ್ತದೆ. ಕಾರ್ಯಸಂಬಂಧಿ ಗುಂಪುಗಳು ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳ ರಾಸಾಯನಿಕ ಹಾಗೂ ಭೌತಿಕ ಲಕ್ಷಣಗಳ ಮೇಲೆ ನಿರ್ಣಾಯಕ ಪ್ರಭಾವ ಬೀರಬಲ್ಲವು. ಪರಮಾಣುಗಳನ್ನು ಅವುಗಳ ಕಾರ್ಯಸಂಬಂಧಿ ಗುಂಪುಗಳ ಆಧಾರದ ಮೇಲೆ ವರ್ಗೀಕರಿಸಲಾಗಿದೆ. ಉದಾಹರಣೆಗೆ ಎಲ್ಲಾ ಆಲ್ಕೋಹಾಲ್‌ಗಳು, C-O-H ಉಪ-ಘಟಕವನ್ನು ಹೊಂದಿರುತ್ತವೆ. ಎಲ್ಲಾ ಆಲ್ಕೋಹಾಲ್‌ಗಳು ಬಹುಮಟ್ಟಿಗೆ ಜಲಾರ್ದ್ರೀಯವಾಗಿ ಈಸ್ಟರ್‌ಗಳಾಗಿ ನಂತರ ಸಾಮಾನ್ಯವಾಗಿ ಅನುಗುಣವಾದ ಹಾಲೈಡ್‌ಗಳಾಗಿ ಮಾರ್ಪಡಿಸಲು ಸಾಧ್ಯ. ಬಹಳಷ್ಟು ಕಾರ್ಯಸಂಬಂಧಿ ಗುಂಪುಗಳು ಭಿನ್ನಾಣುಗಳನ್ನು (C ಮತ್ತು H ಅಲ್ಲದ ಪರಮಾಣುಗಳು) ಹೊಂದಿರುತ್ತದೆ. ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳನ್ನು ಕಾರ್ಯಸಂಬಂಧಿ ಗುಂಪುಗಳ ಪ್ರಕಾರ ಆಲ್ಕೋಹಾಲ್‌ಗಳು, ಕಾರ್ಬೋಆಕ್ಸಿಲ್‌ ಆಮ್ಲಗಳು, ಅಮೈನ್‌ಗಳು, etc ಎಂದು ವರ್ಗೀಕರಿಸಲಾಗುತ್ತದೆ.

ಮೇದಸ್ಸಿನ ಸಂಯುಕ್ತಗಳು[ಬದಲಾಯಿಸಿ]

ಮೇದಸ್ಸಿನ ಹೈಡ್ರೋಕಾರ್ಬನ್‌ಗಳನ್ನು ಅವುಗಳ ಕ್ಲೇದನ ಸ್ಥಿತಿಯ ಮೇಲೆ ಆಧಾರಿತವಾಗಿ ಮೂರು ಸದೃಶ ಸರಣಿಗಳ ಗುಂಪುಗಳಾಗಿ ವಿಂಗಡಿಸಲಾಗಿದೆ:

  • ಮೇಣವಸ್ತುಗಳು, ಇವು ದ್ವಿಬಂಧಕ ಅಥವಾ ತ್ರಿಬಂಧಕವಿಲ್ಲದ ಅಲ್ಕೇನ್‌ಗಳು,
  • ಓಲೆಫಿನ್‌‌ಗಳು ಅಥವಾ ಅಲ್ಕೀನ್‌ಗಳು ಒಂದು ಅಥವಾ ಹೆಚ್ಚಿನ ದ್ವಿಬಂಧಕಗಳನ್ನು ಹೊಂದಿರುತ್ತವೆ, i.e ಡೈ-ಓಲೆಫಿನ್‌ಗಳು (ಡೈಯೀನ್‌ಗಳು) ಅಥವಾ ಪಾಲಿ-ಓಲೆಫಿನ್‌ಗಳು.
  • ಅಲ್ಕೈನ್‌ಗಳು, ಇವು ಒಂದು ಅಥವಾ ಹೆಚ್ಚಿನ ತ್ರಿಬಂಧಕಗಳನ್ನು ಹೊಂದಿರುತ್ತವೆ.

ಗುಂಪಿನ ಉಳಿದವನ್ನು ಲಭ್ಯವಿರುವ ಕಾರ್ಯಸಂಬಂಧಿ ಗುಂಪುಗಳಿಗನುಸಾರವಾಗಿ ವರ್ಗೀಕರಿಸಲಾಗುತ್ತದೆ. ಅಂತಹಾ ಸಂಯುಕ್ತಗಳು "ನೇರ-ಸರಪಣಿಯ," ಶಾಖಾ-ಸರಪಣಿಯ ಅಥವಾ ಆವರ್ತದವಾಗಿರಬಹುದು. ವರ್ಗೀಕರಣದ ಮಟ್ಟವು ಪೆಟ್ರೋಲಿಯಂ ರಸಾಯನಶಾಸ್ತ್ರದಲ್ಲಿ ಆಕ್ಟೇನ್‌ ಸಂಖ್ಯೆ ಅಥವಾ ಸೀಟೇನ್‌ ಸಂಖ್ಯೆ ಇದ್ದಂತೆ ಲಕ್ಷಣಗಳ ಮೇಲೆ ಪ್ರಭಾವ ಬೀರುತ್ತದೆ.

(ಅಲಿಸೈಕ್ಲಿಕ್‌ ಸಂಯುಕ್ತಗಳು ಹಾಗೂ ಕ್ಲೇದಿತವಲ್ಲದ ಸಂಯುಕ್ತಗಳೆರಡೂ ಆವರ್ತ ರೂಪಾಂತರಗಳಾಗಿರುತ್ತವೆ. ಹೆಚ್ಚಿನ ಸ್ಥಿರತೆಯ ವರ್ತುಲಗಳು ಐದು ಅಥವಾ ಆರು ಇಂಗಾಲ ಪರಮಾಣುಗಳನ್ನು ಹೊಂದಿದ್ದರೆ, ದೊಡ್ಡ ವರ್ತುಲಗಳು(ಮ್ಯಾಕ್ರೋಸೈಕಲ್‌ಗಳು) ಹಾಗೂ ಚಿಕ್ಕ ವರ್ತುಲಗಳು ಸಾಮಾನ್ಯವಾಗಿವೆ. ಅತಿ ಸಣ್ಣ ಸೈಕ್ಲೋಆಲ್ಕೇನ್‌ ಕುಟುಂಬವೆಂದರೆ ಮೂರು ಸದಸ್ಯರ ಸೈಕ್ಲೋಪ್ರೊಪೇನ್‌ ((CH2)3). ಕ್ಲೇದಿತ ಆವರ್ತ ಸಂಯುಕ್ತಗಳು ಏಕ ಬಂಧಕವನ್ನು ಮಾತ್ರ ಹೊಂದಿದ್ದರೆ, ಸುವಾಸಿತ ವರ್ತುಲಗಳು ಸರದಿಯ (ಅಥವಾ ಸಂಯೋಗದ) ದ್ವಿಬಂಧಕವನ್ನು ಹೊಂದಿರುತ್ತವೆ. ಸೈಕ್ಲೋಆಲ್ಕೇನ್‌ಗಳು ಬಹುಬಂಧಕಗಳನ್ನು ಹೊಂದಿರುವುದಿಲ್ಲ, ಆದರೆ ಸೈಕ್ಲೋಆಲ್ಕೀನ್‌ಗಳು ಹಾಗೂ ಸೈಕ್ಲೋಆಲ್ಕೈನ್‌ಗಳು ಹೊಂದಿರುತ್ತವೆ.

ಸುಗಂಧಿತ ಸಂಯುಕ್ತಗಳು[ಬದಲಾಯಿಸಿ]

ಬೆಂಜೀನ್‌ ಚಿರಪರಿಚಿತ ಸುಗಂಧಿತ ಸಂಯುಕ್ತಗಳಲ್ಲಿ ಒಂದಲ್ಲದೇ ಇದು ಸುಗಂಧಿತ ಸಂಯುಕ್ತಗಳಲ್ಲೇ ಅತ್ಯಂತ ಸರಳವಾದುದಾಗಿದೆ.

ಸುಗಂಧಿತ ಹೈಡ್ರೋಕಾರ್ಬನ್‌ಗಳು ಸಂಯೋಜಿತ ದ್ವಿಬಂಧಕಗಳನ್ನು ಹೊಂದಿರುತ್ತವೆ. ಪ್ರಮುಖ ಉದಾಹರಣೆಯೆಂದರೆ ಬೆಂಜೀನ್‌, ಕೆಕುಲೇ ಇದನ್ನು ಸೂತ್ರೀಕರಿಸಿದ್ದುದಲ್ಲದೇ ಕೇಂದ್ರೀಕರಣ ಅಥವಾ ಅನುರಣನ ಮೂಲತತ್ವದ ಮೂಲಕ ಅದರ ಸಂರಚನೆಯನ್ನು ವಿವರಿಸಿದ್ದರು. "ಸಾಂಪ್ರದಾಯಿಕ" ಆವರ್ತ ಸಂಯುಕ್ತಗಳಿಗೆ, ಸುಗಂಧತ್ವವು n ಒಂದು ಪೂರ್ಣಾಂಕವಾಗಿರುವಾಗ 4n + 2 ಸಂಖ್ಯೆಯ ಕೇಂದ್ರೀಕೃತ ಪೈ ಎಲೆಕ್ಟ್ರಾನ್‌ಗಳ ಲಭ್ಯತೆಯ ಮೇರೆಗೆ ಲಭ್ಯವಾಗುತ್ತದೆ. ನಿರ್ದಿಷ್ಟ ಅಸ್ಥಿರತೆಯು (ಸುಗಂಧತ್ವವಲ್ಲದ್ದು) 4n ಸಂಯೋಜಿತ ಪೈ ಎಲೆಕ್ಟ್ರಾನ್‌ಗಳ ಲಭ್ಯತೆಯ ಮೇರೆಗೆ ಲಭ್ಯವಾಗುತ್ತದೆ.

ಆವರ್ತಕವಲ್ಲದ ಸಂಯುಕ್ತಗಳು[ಬದಲಾಯಿಸಿ]

ಆವರ್ತಕ ಹೈಡ್ರೋಕಾರ್ಬನ್‌ಗಳ ಲಕ್ಷಣಗಳು ಭಿನ್ನಾಣುಗಳು ಇದ್ದರೆ ಮತ್ತೆ ಬದಲಾಗುತ್ತದೆ ಇವು ವರ್ತುಲಕ್ಕೆ ಬಾಹ್ಯವಾಗಿ ಸಂಪರ್ಕಿತವಾದ, (ಎಕ್ಸೋಸೈಕ್ಲಿಕ್‌) ಅಥವಾ ವರ್ತುಲದ ಸದಸ್ಯವಾಗಿಯೇ (ಎಂಡೋಸೈಕ್ಲಿಕ್‌) ಲಭ್ಯವಿರುವ ಆದೇಶ್ಯವಾಗಿರುತ್ತವೆ. ದ್ವಿತೀಯ ಸಂದರ್ಭದಲ್ಲಿ ವರ್ತುಲವನ್ನು ಅನಾವರ್ತ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ಪೈರಿಡೈನ್‌ ಹಾಗೂ ಫುರಾನ್‌ಗಳು ಸುಗಂಧಿತ ಅನಾವರ್ತಗಳ ಉದಾಹರಣೆಯಾದರೆ ಪಿಪೆರಿಡೈನ್‌ ಹಾಗೂ ಟೆಟ್ರಾಹೈಡ್ರೋಫುರಾನ್‌ಗಳು ಸಂಬಂಧಿತ ಅಲಿಸೈಕ್ಲಿಕ್‌ ಅನಾವರ್ತಗಳಾಗಿವೆ. ಅನಾವರ್ತಿತ ಪರಮಾಣುಗಳ ಭಿನ್ನಾಣುಗಳು ಸಾಮಾನ್ಯವಾಗಿ ಆಮ್ಲಜನಕ, ಗಂಧಕ, ಅಥವಾ ಸಾರಜನಕ, ಅದರಲ್ಲೂ ಕೊನೆಯದು ಜೀವರಾಸಾಯನಿಕ ವ್ಯವಸ್ಥೆಗಳಲ್ಲಿ ಸಾಮಾನ್ಯವಾಗಿದೆ.

ಅನಾವರ್ತಗಳಲ್ಲಿನ ಗುಂಪುಗಳ ಉದಾಹರಣೆಯೆಂದರೆ ಅನಿಲೈನ್‌ ಡೈಗಳು, ಜೀವರಸಾಯನಶಾಸ್ತ್ರದಲ್ಲಿ ಪ್ರಸ್ತಾಪಗೊಳ್ಳುವ ಅಲ್ಕಲಾಯ್ಡ್‌ಗಳು, ಜೀವಸತ್ವಗಳಿಗೆ ಸಂಬಂಧಪಟ್ಟ ಅನೇಕ ಸಂಯುಕ್ತಗಳು, ಸ್ಟಿರಾಯ್ಡ್‌ಗಳು, ನ್ಯೂಕ್ಲಿಯಿಕ್‌ ಆಮ್ಲಗಳು (e.g. DNA, RNA) ಹಾಗೂ ಅನೇಕ ಔಷಧಿಗಳಲ್ಲಿ ಬಳಸಲಾಗುವ ಸಂಯುಕ್ತಗಳು. ಸರಳ ಸಂರಚನೆಯ ಅನಾವರ್ತಗಳೆಂದರೆ ಪೈರ್ರೋಲ್‌ (5-ಸದಸ್ಯರ) ಹಾಗೂ ಇಂಡೋಲ್‌ (6-ಸದಸ್ಯರ ಇಂಗಾಲದ ವರ್ತುಲ).

ವರ್ತುಲಗಳು ಇತರೆ ವರ್ತುಲಗಳೊಂದಿಗೆ ಒಂದು ತುದಿಯಲ್ಲಿ ಸೇರಿಕೊಂದು ಬಹುಆವರ್ತದ ಸಂಯುಕ್ತಗಳನ್ನು ನೀಡುತ್ತವೆ. ಪ್ಯೂರಿನ್‌ ನ್ಯೂಕ್ಲಿಯೋಸೈಡ್‌ ಪ್ರತ್ಯಾಮ್ಲಗಳು ಪ್ರಮುಖ ಬಹುಆವರ್ತಿತ ಸುಗಂಧಿತ ಅನಾವರ್ತಗಳಾಗಿವೆ. ವರ್ತುಲಗಳು ಒಂದು "ಮೂಲೆಯಲ್ಲಿ" ಸೇರಿ ಒಂದು ಪರಮಾಣು (ಬಹುಮಟ್ಟಿಗೆ ಯಾವಾಗಲೂ ಇಂಗಾಲ) ಎರಡು ಬಂಧಕಗಳನ್ನು ಹೊಂದಿರುವ ಒಂದು ಆವರ್ತವಾಗಿದ್ದು ಹಾಗೂ ಎರಡನೆಯದಕ್ಕೆ ಎರಡು ಆವರ್ತಗಳಾಗಿರುತ್ತವೆ. ಅಂತಹಾ ಸಂಯುಕ್ತಗಳನ್ನು ಸ್ಪೈರೋ ಎಂದು ಕರೆಯಲಾಗುತ್ತದಲ್ಲದೇ ಅನೇಕ ನೈಸರ್ಗಿಕ ಉತ್ಪನ್ನಗಳಲ್ಲಿ ಅವು ಬಹಳ ಮುಖ್ಯವಾಗಿವೆ.

ಪಾಲಿಮರ್‌ಗಳು[ಬದಲಾಯಿಸಿ]

ಈ ಈಜುಪಟ್ಟಿಯು ಪಾಲಿಮರ್‌ನ ಉದಾಹರಣೆಯಾದ ಪಾಲಿಸ್ಟೈರೀನ್‌ನಿಂದ ರಚಿತವಾದುದು

ಇಂಗಾಲದ ಒಂದು ಪ್ರಮುಖ ಲಕ್ಷಣವೆಂದರೆ ಇಂಗಾಲ-ಇಂಗಾಲ ಬಂಧಕಗಳಿಂದ ಸಂಪರ್ಕಿತಗೊಳ್ಳುವ ಸರಪಣಿ ಹಾಗೂ ಜಾಲಗಳನ್ನು ಸಹಾ ಕೂಡಲೇ ನಿರ್ಮಿಸಿಕೊಳ್ಳಬಲ್ಲದು. ಸಂಪರ್ಕಗೊಳ್ಳುವಿಕೆಯ ಪ್ರಕ್ರಿಯೆಯನ್ನು ಪಾಲಿಮರೀಕರಣ ಎನ್ನಲಾಗುತ್ತದಲ್ಲದೇ ಮೂಲ ಸಂಯುಕ್ತವು ಮಾನೋಮರ್‌ ಆಗಿದ್ದಾಗ ಇದು ಪಾಲಿಮರ್‌ಗಳನ್ನು ಬಂಧಿಸುತ್ತದೆ ಇಲ್ಲವೇ ಜಾಲವನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ. ಪಾಲಿಮರ್‌ಗಳ ಎರಡು ಪ್ರಮುಖ ಗುಂಪುಗಳಿವೆ : ಕೃತಕವಾಗಿ ಉತ್ಪಾದನೆಯಾದವನ್ನು ಔದ್ಯಮಿಕ ಪಾಲಿಮರ್‌ಗಳು[೫] ಅಥವಾ ಕೃತಕ ಪಾಲಿಮರ್‌ಗಳು ಹಾಗೂ ನೈಸರ್ಗಿಕವಾಗಿ ರಚಿತವಾದವನ್ನು ಜೈವಿಕ ಪಾಲಿಮರ್‌ಗಳು ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.

ಪ್ರಥಮ ಕೃತಕ ಪಾಲಿಮರ್‌, ಬೇಕ್‌ಲೈಟ್‌ನ ಆವಿಷ್ಕಾರದ ನಂತರ, ಅದರ ಕುಟುಂಬವು ಇತರೆ ಪಾಲಿಮರ್‌ಗಳ ಆವಿಷ್ಕಾರಗಳೊಂದಿಗೆ ತೀವ್ರ ಬೆಳವಣಿಗೆ ಕಂಡಿತು. ಸಾಮಾನ್ಯ ಕೃತಕ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಪಾಲಿಮರ್‌ಗಳೆಂದರೆ ಪಾಲಿಈಥೈಲೀನ್‌ (ಪಾಲಿಥಿನ್‌‌), ಪಾಲಿಪ್ರಾಪೈಲೀನ್‌, ನೈಲಾನ್‌‌, ಟೆಫ್ಲಾನ್‌ (PTFE), ಪಾಲಿಸ್ಟೈರೀನ್‌, ಪಾಲಿಸ್ಟರ್‌ಗಳು, ಪಾಲಿಮೀಥೈಲ್‌ಮೆಥಾಕ್ರೈಲೇಟ್‌ (ಪರ್ಸ್‌ಪ್ಲೆಕ್ಸ್‌‌ ಹಾಗೂ ಪ್ಲೆಕ್ಸಿಗ್ಲಾಸ್‌ ಎಂದು ಕರೆಯಲ್ಪಡುತ್ತವೆ), ಹಾಗೂ ಪಾಲಿವಿನೈಲ್‌ಕ್ಲೋರೈಡ್‌ (PVC). ಕೃತಕ ಹಾಗೂ ನೈಸರ್ಗಿಕ ರಬ್ಬರ್‌ಗಳು ಸಹಾ ಪಾಲಿಮರ್‌ಗಳೇ ಆಗಿವೆ.

ಉದಾಹರಣೆಗಳು ಸಾಧಾರಣ ಪದಗಳಾಗಿದ್ದು, ಭೌತಿಕ ಲಕ್ಷಣಗಳನ್ನು ನಿರ್ದಿಷ್ಟ ಬಳಕೆಗೆಂದು ಹೊಂದಿಸಿದ ಪ್ರತಿಯೊಂದರ ಅನೇಕ ವಿಧಗಳು ಇರಬಹುದಾಗಿದೆ. ಸರಪಣಿಯ ಉದ್ದ ಬದಲಿಸುವ, ಅಥವಾ ಶಾಖೆ ಅಥವಾ ಟ್ಯಾಕ್ಟಿಸಿಟಿ ರಚಿಸುವ ಮೂಲಕ ಪಾಲಿಮರೀಕರಣದ ಸ್ಥಿತಿಗಳ ಬದಲಿಕೆಯು ಉತ್ಪನ್ನದ ರಾಸಾಯನಿಕ ಸಂಯೋಜನೆಯನ್ನೇ ಬದಲಿಸುತ್ತದೆ. ಏಕ ಮಾನೋಮರ್‌ ಬಳಕೆಯ ಉತ್ಪನ್ನವೆಂದರೆ ಹೋಮೋಪಾಲಿಮರ್‌. ಅಲ್ಲದೇ, ಮಾಧ್ಯಮಿಕ ಘಟಕ(ಗಳ)ನ್ನು ಸೇರಿಸಿ ಹೆಟಿರೋಪಾಲಿಮರ್‌ (ಕೋ-ಪಾಲಿಮರ್‌) ಹಾಗೂ ವಿವಿಧ ಘಟಕಗಳ ಸಮುದಾಯಗಳನ್ನು ಜೋಡಿಸುವಿಕೆಯ ಮಟ್ಟವನ್ನು ಸಹಾ ನಿಯಂತ್ರಿಸಬಹುದಾಗಿದೆ. ಗಡಸುತನ, ಸಾಂದ್ರತೆ, ಯಾಂತ್ರಿಕ ಅಥವಾ ಕರ್ಷಕ ಬಲ, ಸವೆತ ವಿರೋಧ, ಉಷ್ಣವಿರೋಧ, ಪಾರದರ್ಶಕತೆ, ವರ್ಣ etc. ಭೌತಿಕ ಲಕ್ಷಣಗಳು ಅಂತಿಮ ಸಂಯುಕ್ತದ ಮೇಲೆ ಆಧಾರಿತವಾಗಿರುತ್ತವೆ.

ಜೈವಿಕ ಪರಮಾಣುಗಳು[ಬದಲಾಯಿಸಿ]

ಮೈಟೋಟಾಕ್ಸಿನ್‌, ಸಂಕೀರ್ಣ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಜೈವಿಕ ಜೀವಾಣು ವಿಷ.

ಜೈವಿಕ ಪರಮಾಣುಗಳ ರಸಾಯನಶಾಸ್ತ್ರವು ಜೈವಿಕರಸಾಯನ ತಜ್ಞರು ಆಗ್ಗಾಗ್ಗೆ ಅಧ್ಯಯನಕ್ಕೊಳಪಡುವ ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರದ ಒಂದು ಪ್ರಮುಖ ವಿಭಾಗವಾಗಿದೆ. ಅನೇಕ ಸಂಕೀರ್ಣ ಬಹುಕಾರ್ಯ ಗುಂಪು ಪರಮಾಣುಗಳು ಜೀವಿಗಳಲ್ಲಿ ಅತಿ ಪ್ರಮುಖವಾದವು. ಕೆಲವು ದೀರ್ಘ-ಬಂಧಕದ ಜೈವಿಕಪಾಲಿಮರ್‌ಗಳು, ಹಾಗೂ ಇವು ಪೆಪ್ಟೈಡ್‌ಗಳು, DNA, RNA ಹಾಗೂ ಪ್ರಾಣಿಗಳಲ್ಲಿ ಪಿಷ್ಟ ಹಾಗೂ ಸಸ್ಯಗಳಲ್ಲಿ ಕೋಶಗಳಂತೆ ಪಾಲಿಸಕರೈಡ್‌ಗಳನ್ನು ಹೊಂದಿರುತ್ತವೆ. ಇತರೆ ಪ್ರಮುಖ ವರ್ಗಗಳೆಂದರೆ ಅಮೈನೋ ಆಮ್ಲಗಳು (ಪ್ರೋಟೀನ್‌ಗಳ ಪ್ರಮುಖ ಅಂಶವಾದ ಮಾನೋಮರ್‌), ಕಾರ್ಬೋಹೈಡ್ರೇಟ್‌ಗಳು (ಪಾಲಿಸಕರೈಡ್‌ಗಳನ್ನು ಹೊಂದಿರುವ), ನ್ಯೂಕ್ಲಿಯಿಕ್‌ ಆಮ್ಲಗಳು (DNA ಹಾಗೂ RNAಗಳನ್ನು ಪಾಲಿಮರ್‌ಗಳಾಗಿ ಹೊಂದಿರುವ), ಹಾಗೂ ಮೇದಸ್ಸು. ಇದರೊಂದಿಗೆ ಪ್ರಾಣಿಗಳ ದೇಹವು ಕ್ರೆಬ್ಸ್‌ ಆವರ್ತದ ಮೂಲಕ ಶಕ್ತಿ ಉತ್ಪಾದನೆಗೆ ಸಹಾಯ ಮಾಡುವ ಅನೇಕ ಸಣ್ಣ ಮಧ್ಯವರ್ತಿ ಅಣುಗಳನ್ನು ಹೊಂದಿರುವುದಲ್ಲದೇ, ಪ್ರಾಣಿಗಳಲ್ಲಿ ಬಹು ಸಾಮಾನ್ಯ ಹೈಡ್ರೋಕಾರ್ಬನ್‌ ಆದ ಐಸೋಪ್ರೀನ್‌ ಅನ್ನು ಉತ್ಪಾದಿಸುತ್ತದೆ. ಪ್ರಾಣಿಗಳಲ್ಲಿ ಐಸೋಪ್ರೀನ್‌ಗಳು ಪ್ರಮುಖ ಸಂರಚನಾತ್ಮಕ ಸ್ಟಿರಾಯ್ಡ್‌ (ಕೊಲೆಸ್ಟರಾಲ್‌ ) ಹಾಗೂ ಸ್ಟಿರಾಯ್ಡ್‌ ಹಾರ್ಮೋನ್‌ ಸಂಯುಕ್ತಗಳಾಗುವವಲ್ಲದೇ; ಸಸ್ಯಗಳಲ್ಲಿ ಟರ್ಪೀನ್‌ಗಳು, ಟರ್ಪಿನಾಯ್ಡ್‌ಗಳು, ಕೆಲ ಅಲ್ಕಲಾಯ್ಡ್‌ಗಳು, ಹಾಗೂ ರಬ್ಬರ್‌ ಉತ್ಪಾದಿಸಲು ಬಳಸುವ ಜೈವಿಕ ಪಾಲಿಮರ್‌ ಪಾಲಿಐಸೋಪ್ರೆನಾಯ್ಡ್‌ಗಳೆಂದು ಕರೆಯಲ್ಪಡುವ ಸಸ್ಯಕ್ಷೀರದ ಸತ್ವದಲ್ಲಿ ಲಭ್ಯವಿರುವ ವಿಶಿಷ್ಟ ಹೈಡ್ರೋಕಾರ್ಬನ್‌ಗಳು ಇರುತ್ತವೆ.

ಪೆಪ್ಟೈಡ್‌ ಸಂಶ್ಲೇಷೀಕರಣ
ಪೆಪ್ಟೈಡ್‌ ಸಂಶ್ಲೇಷೀಕರಣವನ್ನು ಕೂಡ ನೋಡಿ
ಆಲಿಗೋನ್ಯೂಕ್ಲಿಯೋಟೈಡ್‌‌ ಸಂಶ್ಲೇಷೀಕರಣ
ಆಲಿಗೋನ್ಯೂಕ್ಲಿಯೋಟೈಡ್‌‌ ಸಂಶ್ಲೇಷೀಕರಣವನ್ನು ಕೂಡ ನೋಡಿ
ಕಾರ್ಬೋಹೈಡ್ರೇಟ್‌ ಸಂಶ್ಲೇಷೀಕರಣ
ಕಾರ್ಬೋಹೈಡ್ರೇಟ್‌ ಸಂಶ್ಲೇಷೀಕರಣವನ್ನು ಕೂಡ ನೋಡಿ

ಸಣ್ಣ ಪರಮಾಣುಗಳು[ಬದಲಾಯಿಸಿ]

ಔಷಧವಸ್ತುಶಾಸ್ತ್ರದಲ್ಲಿ, 'ಸಣ್ಣ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳು' ಎಂದೂ ಕರೆಯಲ್ಪಡುವ ಸಣ್ಣ ಪರಮಾಣುಗಳು ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳ ಪ್ರಮುಖ ಗುಂಪಾಗಿವೆ. ಈ ಸಂದರ್ಭದಲ್ಲಿ, ಸಣ್ಣ ಪರಮಾಣುವೆಂದರೆ ಜೈವಿಕವಾಗಿ ಸಕ್ರಿಯವಾಗಿರುವ ಪಾಲಿಮರ್‌ ಅಲ್ಲದ ಸಣ್ಣ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತವಾಗಿರುತ್ತದೆ. ಬಳಕೆಯಲ್ಲಿ ಸಣ್ಣ ಪರಮಾಣುಗಳು ಸರಿಸುಮಾರು 1000 g/molಗಿಂತ ಕಡಿಮೆ ಪ್ರಮಾಣದ ಮೋಲಾರ್‌/ಆರ್ದ್ರ ದ್ರವ್ಯರಾಶಿಯನ್ನು ಹೊಂದಿರುತ್ತವೆ.

ಕೆಫೀನ್‌ನ ಅಣು ಮಾದರಿಗಳು

ಫುಲ್ಲರೀನ್‌ಗಳು[ಬದಲಾಯಿಸಿ]

ಅಂಡಗೋಳ ಹಾಗೂ ಕೊಳವೆಯಂತಹಾ ರಚನೆಯ ಇಂಗಾಲ ಸಂಯುಕ್ತಗಳಾದ ಫುಲ್ಲರೀನ್‌ಗಳು ಹಾಗೂ ಇಂಗಾಲ ನ್ಯಾನೋಟ್ಯೂಬ್‌ಗಳು, ವಸ್ತುವಿಜ್ಞಾನದ ಸಂಬಂಧಿತ ಕ್ಷೇತ್ರದಲ್ಲಿ ಹೆಚ್ಚಿನ ಸಂಶೋಧನೆಗಳಿಗೆ ಇಂಬು ನೀಡಿವೆ.

ಇತರೆ:[ಬದಲಾಯಿಸಿ]

ಇಂಗಾಲದಿಂದ ಸಾರಜನಕ, ಆಮ್ಲಜನಕ ಹಾಗೂ ಹಾಲೋಜನ್‌ಗಳೊಂದಿಗೆ ಬಂಧಿತವಾಗಿರುವ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳನ್ನು ಪ್ರತ್ಯೇಕವಾಗಿ ವರ್ಗೀಕರಿಸಲಾಗಿದೆ. ಇತರವುಗಳನ್ನು ಕೆಲಬಾರಿ ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರದಲ್ಲಿಯೇ ಪ್ರಮುಖ ವರ್ಗಗಳಲ್ಲಿ ಸೇರಿಸಲಾಗುತ್ತದೆ ಹಾಗೂ ಸಾವಯವ ಗಂಧಕರಸಾಯನಶಾಸ್ತ್ರ, ಸಾವಯವ ಲೋಹರಸಾಯನಶಾಸ್ತ್ರ, ಸಾವಯವ ರಂಜಕರಸಾಯನಶಾಸ್ತ್ರ ಹಾಗೂ ಸಾವಯವ ಸಿಲಿಕಾನ್‌ರಸಾಯನಶಾಸ್ತ್ರ ಎಂಬ ಶೀರ್ಷಿಕೆಗಳಡಿಯಲ್ಲಿ ಸೇರಿಸಲಾಗುತ್ತದೆ.

ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಶ್ಲೇಷೀಕರಣ[ಬದಲಾಯಿಸಿ]

E.J. ಕೊರೆಯವರು ವಿನ್ಯಾಸಗೊಳಿಸಿದ ಆಸೆಲ್ಟಾಮಿವಿರ್‌ (ಟ್ಯಾಮಿಫ್ಲೂ) ಒಂದು ಸಂಶ್ಲೇಷೀಕರಣ. ಈ ಸಂಶ್ಲೇಷೀಕರಣವು 11 ವಿಶಿಷ್ಟ ಪ್ರತಿಕ್ರಿಯೆಗಳನ್ನು ಹೊಂದಿದೆ.

ಕೃತಕ ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರ ಎಂಬುದು "ರಚನೆ, ವಿಶ್ಲೇಷಣೆ, ಹಾಗೂ/ಅಥವಾ ಕಾರ್ಯಶೀಲ ಉದ್ದೇಶಗಳಿಗೆ ಕಾರ್ಯ ನಿರ್ಮಾಣ"ವಾದ ಯಂತ್ರಜ್ಞಾನಕ್ಕೆ ಸಮೀಪವಾಗಿರುವ ಕಾರಣ ಅನ್ವಯಿಕ ವಿಜ್ಞಾನವೆಂದೆನಿಸಿಕೊಳ್ಳುತ್ತದೆ. ಉದ್ದೇಶಿತ ಪರಮಾಣುವಿಗೆಂದು ಸೂಕ್ತ ಆರಂಭಿಕ ವಸ್ತುಗಳನ್ನು ಆಯ್ಕೆ ಮಾಡಿ ಸಿದ್ಧಪಡಿಸುವ ಸಂಶ್ಲೇಷೀಕರಣದಂತಹಾ ಅಪೂರ್ವ ಸಂಯುಕ್ತವೊಂದರ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಶ್ಲೇಷೀಕರಣವು ಸಮಸ್ಯೆ ಪರಿಹಾರದಂತಹಾ ಕಾರ್ಯವಾಗಿದೆ. ಸಂಕೀರ್ಣ ಸಂಯುಕ್ತಗಳು ಅಗತ್ಯದ ಪರಮಾಣುವನ್ನು ರಚಿಸುವ ಹತ್ತಾರು ಅನುಕ್ರಮ ಪ್ರತಿಕ್ರಿಯಾ ಹಂತಗಳನ್ನು ಹೊಂದಿರಬಹುದು. ಸಂಶ್ಲೇಷೀಕರಣವು ಪರಮಾಣುವಿನ ಕಾರ್ಯಕಾರಿ ಗುಂಪುಗಳ ಪ್ರತಿಕ್ರಿಯಾಶೀಲತೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಮುಂದುವರೆಯುತ್ತದೆ. ಉದಾಹರಣೆಗೆ, ಕಾರ್ಬೋನಿಲ್‌ ಸಂಯುಕ್ತವನ್ನು ಎನೋಲೇಟ್‌ ಆಗಿ ಇಲ್ಲವೇ ಎಲೆಕ್ಟ್ರೋಫೈಲ್‌; ಆಗಿ ಪರಿವರ್ತಿಸಿ ನ್ಯೂಕ್ಲಿಯೋಫೈಲ್‌ ಆಗಿ ಬಳಸಬಹುದು ಎರಡರ ಸಂಯೋಜನೆಯನ್ನು ಅಲ್ಡೋಲ್‌ ಪ್ರಕ್ರಿಯೆ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ಪ್ರಯೋಗಾಲಯದಲ್ಲಿ ವಾಸ್ತವಿಕ ಸಂಶ್ಲೇಷೀಕರಣ ಮಾಡುವ ಮೂಲಕ ಮಾತ್ರವೇ ಕಾರ್ಯತಃ ಉಪಯುಕ್ತ ಸಂಶ್ಲೇಷೀಕರಣವನ್ನು ರಚಿಸಬಹುದು. ಸಂಕೀರ್ಣ ಪರಮಾಣುಗಳಿಗೆಂದು ಅಪೂರ್ವ ಕೃತಕ ಮಾರ್ಗಗಳನ್ನು ನಿರ್ಮಿಸುವುದನ್ನು ಸಂಪೂರ್ಣ ಸಂಶ್ಲೇಷೀಕರಣ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.

ಸಂಶ್ಲೇಷೀಕರಣವನ್ನು ರಚಿಸಲು ಅನೇಕ ಕಾರ್ಯನೀತಿಗಳಿವೆ. E.J. ಕೊರೆಯವರು ಅಭಿವೃದ್ಧಿಪಡಿಸಿದ ಆಧುನಿಕ ಪ್ರತಿಸಂಶ್ಲೇಷೀಕರಣ ವಿಧಾನವು, ಉದ್ಧೇಶಿತ ಪರಮಾಣುವಿನೊಂದಿಗೆ ಆರಂಭವಾಗಿ ಪರಿಚಿತ ಬಿಡಿ ಪ್ರಕ್ರಿಯೆಗಳಾಗಿ ಪ್ರತ್ಯೇಕಗೊಳ್ಳುತ್ತದೆ. ಬಿಡಿ ಪ್ರಕ್ರಿಯೆಗಳು ಅಥವಾ ಪ್ರಸ್ತಾಪಿತ ಪೂರ್ವಗಾಮಿಗಳೊಂದಿಗೆ ಲಭ್ಯವಾಗುವವರೆಗೆ ಹಾಗೂ ಅಗ್ಗದ ಆರಂಭಿಕ ವಸ್ತುಗಳ ಹಂತಕ್ಕೆ ತಲುಪುವವರೆಗೆ ಅದೇ ಪ್ರಕ್ರಿಯೆಗೆ ಒಳಗಾಗುತ್ತಿರುತ್ತವೆ. ನಂತರ ಪ್ರತಿಸಂಶ್ಲೇಷೀಕರಣದ ವಿಧಾನವನ್ನು ವಿರುದ್ಧ ದಿಕ್ಕಿನಲ್ಲಿ ದಾಖಲಿಸಿ ಸಂಶ್ಲೇಷೀಕರಣವನ್ನು ಪಡೆಯಲಾಗುತ್ತದೆ. "ಕೃತಕ ಮರ"ವನ್ನು ನಿರ್ಮಿಸಬಹುದು, ಏಕೆಂದರೆ ಪ್ರತಿ ಸಂಯುಕ್ತವು ಹಾಗೂ ಪ್ರತಿ ಪೂರ್ವಗಾಮಿಯು ಬಹು ಸಂಶ್ಲೇಷಣೆಗಳನ್ನು ಹೊಂದಿರುತ್ತವೆ.

ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಪ್ರತಿಕ್ರಿಯೆಗಳು[ಬದಲಾಯಿಸಿ]

ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಪ್ರತಿಕ್ರಿಯೆಗಳು ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳನ್ನೊಳಗೊಂಡ ರಾಸಾಯನಿಕ ಪ್ರತಿಕ್ರಿಯೆಗಳಾಗಿರುತ್ತವೆ. ಶುದ್ಧ ಹೈಡ್ರೋಕಾರ್ಬನ್‌ಗಳು ನಿರ್ದಿಷ್ಟ ವರ್ಗದ ಪ್ರತಿಕ್ರಿಯೆಗಳನ್ನು ಮಾತ್ರ ನೀಡಿದರೆ, ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಸಂಯುಕ್ತಗಳು ಒಳಗಾಗುವ ಪ್ರತಿಕ್ರಿಯೆಗಳು ಬಹುಮಟ್ಟಿಗೆ ಕಾರ್ಯಕಾರಿ ಗುಂಪುಗಳ ಮೇಲೆ ಆಧಾರವಾಗಿರುತ್ತದೆ. ಈ ಪ್ರತಿಕ್ರಿಯೆಗಳ ಸಾಮಾನ್ಯ ಸಿದ್ಧಾಂತವು ಪ್ರಮುಖ ಪರಮಾಣುಗಳ ಎಲೆಕ್ಟ್ರಾನ್‌ ಸಾಮ್ಯತೆ, ಬಂಧದ ಸಾಮರ್ಥ್ಯ ಹಾಗೂ ಕ್ರಿಯಾರೋಧಗಳಂತಹಾ ಲಕ್ಷಣಗಳ ಎಚ್ಚರಿಕೆಯ ವಿಶ್ಲೇಷಣೆಯನ್ನೊಳಗೊಂಡಿರುತ್ತದೆ. ಈ ಪರಿಣಾಮಗಳು ಪ್ರತಿಕ್ರಿಯೆಯ ಮಾರ್ಗವನ್ನು ನಿರ್ಧರಿಸುವ ಅಲ್ಪಕಾಲೀನ ಪ್ರತಿಕ್ರಿಯಾತ್ಮಕ ಮಧ್ಯವರ್ತಿಗಳ ಸಾಪೇಕ್ಷ ದೃಢತೆಯನ್ನು ನಿರ್ಧರಿಸಬಲ್ಲವು.

ಮೂಲಭೂತ ಪ್ರತಿಕ್ರಿಯಾ ಪ್ರಭೇದಗಳೆಂದರೆ : ಅನುಬಂಧಕ ಪ್ರತಿಕ್ರಿಯೆಗಳು, ನಿವಾರಣಾತ್ಮಕ ಪ್ರತಿಕ್ರಿಯೆಗಳು, ಬದಲಿಕೆಯ ಪ್ರತಿಕ್ರಿಯೆಗಳು, ಆವರ್ತವನ್ನಾವರಿಸಿದ ಪ್ರತಿಕ್ರಿಯೆಗಳು, ಪ್ರತಿಕ್ರಿಯೆಗಳ ಹಾಗೂ ಆಕ್ಸಿಡೀಕರಣ ಪ್ರತಿಕ್ರಿಯೆಗಳ ಪುನರ್‌-ಹೊಂದಾಣಿಕೆಗಳು. ಸಾಧಾರಣ ಪ್ರತಿಕ್ರಿಯೆಯ ಉದಾಹರಣೆಯೆಂದರೆ ಬದಲಿಕೆಯ ಪ್ರತಿಕ್ರಿಯೆಯಾದ:

Nu + C-X → C-Nu + X

ಇಲ್ಲಿ X ಒಂದು ಕಾರ್ಯಕಾರಿ ಗುಂಪು ಹಾಗೂ Nu ಒಂದು ನ್ಯೂಕ್ಲಿಯೋಫೈಲ್‌ ಆಗಿರುತ್ತದೆ.

ಸಂಭವನೀಯ ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಪ್ರತಿಕ್ರಿಯೆಗಳ ಸಂಖ್ಯೆ ಮೂಲಭೂತವಾಗಿ ಅಪರಿಮಿತ. ಆದಾಗ್ಯೂ ಅನೇಕ ಸಾಧಾರಣ ಅಥವಾ ಉಪಯುಕ್ತ ಪ್ರತಿಕ್ರಿಯೆಗಳನ್ನು ವಿವರಿಸಬಲ್ಲ ನಿರ್ದಿಷ್ಟ ಸಾಧಾರಣ ಶೈಲಿಗಳನ್ನು ವಿಷದೀಕರಿಸಬಹುದಾಗಿದೆ. ಪ್ರತಿ ಪ್ರತಿಕ್ರಿಯೆಯು ಕ್ರಮವಾದ ಸರಣಿಯಲ್ಲಿನ ಪ್ರತಿಕ್ರಿಯಾ ವಿಧಾನವನ್ನು ಹೊಂದಿರುತ್ತವೆ, ಆದರೆ ಕೇವಲ ಭಾಗಿಗಳ ಪಟ್ಟಿಯಿಂದಲೇ ಹಂತಗಳ ವಿವರಣಾತ್ಮಕ ವರ್ಣನೆ ಯಾವಾಗಲೂ ಸಾಧ್ಯವಾಗಲೇ ಬೇಕೆಂದೇನಿಲ್ಲ.

ಇವನ್ನೂ ಗಮನಿಸಿ[ಬದಲಾಯಿಸಿ]

ಆಕರಗಳು[ಬದಲಾಯಿಸಿ]

  1. [0] ^ ರಾಬರ್ಟ್‌ T. ಮಾರ್ರಿಸನ್‌, ರಾಬರ್ಟ್‌ N. ಬಾಯ್ಡ್‌, ಹಾಗೂ ರಾಬರ್ಟ್‌ K. ಬಾಯ್ಡ್‌, ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರ , 6ನೇ ಆವೃತ್ತಿ (ಬೆಂಜಮಿನ್‌ ಕಮ್ಮಿಂಗ್ಸ್, 1992, ISBN 0-13-643669-2) - ಇದು "ಮಾರಿಸನ್‌ ಹಾಗೂ ಬಾಯ್ಡ್‌", ಅತ್ಯುತ್ತಮ ಪುಸ್ತಕ
  2. [1] ^ ಜಾನ್‌ D. ರಾಬರ್ಟ್ಸ್‌, ಮರ್ಜೋರಿ C. ಕ್ಯಾಸೆರಿಯೋ, ಬೇಸಿಕ್‌ ಪ್ರಿನ್ಸಿಪಲ್ಸ್‌‌ ಆಫ್‌ ಆರ್ಗ್ಯಾನಿಕ್‌ ಕೆಮಿಸ್ಟ್ರಿ ,(W. A. ಬೆಂಜಮಿನ್, Inc. ,1964) - ಮತ್ತೊಂದು ಶ್ರೇಷ್ಟ ಪುಸ್ತಕ
  3. [2] ^ ರಿಚರ್ಡ್‌ F. ಹಾಗೂ ಸ್ಯಾಲಿ J. ಡಾಲೆ, ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರ , ಆನ್‌ಲೈನ್‌ ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರ ಪುಸ್ತಕ. Ochem4free.info
  4. [5] ^ "ದ ಸಿಸ್ಟಮ್ಯಾಟಿಕ್‌ ಐಡೆಂಟಿಫಿಕೇಷನ್‌ ಆಫ್‌ ಆರ್ಗ್ಯಾನಿಕ್‌ ಕಾಂಪೌಂಡ್ಸ್‌ " R.L. ಷ್ರೀನರ್‌r, C.K.F. ಹರ್ಮನ್‌‌, T.C. ಮಾರ್ರಿಲ್‌, D.Y. ಕರ್ಟಿನ್‌, ಹಾಗೂ R.C. ಫ್ಯೂಸನ್‌ ಜಾನ್‌ ವಿಲೇ & ಸನ್ಸ್, 1997 0-471-59748-1
  5. "ಇಂಡಸ್ಟ್ರಿಯಲ್‌ ಪಾಲಿಮರ್ಸ್‌ , ಕೆಮಿಸ್ಟ್ರಿ ಆಫ್‌." ಬ್ರಿಟಾನಿಕಾ ವಿಶ್ವಕೋಶ 2006

ಹೊರಗಿನ ಕೊಂಡಿಗಳು[ಬದಲಾಯಿಸಿ]

  • MIT.edu, ಓಪನ್‌ಕೋರ್ಸ್‌ವೇರ್‌ : ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರ I
  • HaverFord.edu, ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರ ಉಪನ್ಯಾಸಗಳು, ವಿಡಿಯೋಗಳು ಹಾಗೂ ಲೇಖನಗಳು
  • ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರದ ವೈಜ್ಞಾನಿಕ ಪತ್ರಿಕೆ (ಸದಸ್ಯತ್ವ ಅಗತ್ಯ) (ಪರಿವಿಡಿ)
  • ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಪತ್ರಗಳು(Pubs.ACS.org, ಪರಿವಿಡಿ)
  • Thime-Connect.com, ಸಿನ್ಲೆಟ್‌
  • Thieme-Connect.com, ಸಂಶ್ಲೇಷೀಕರಣ
  • Organic-Chemistry.org, ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರ ಜಾಲತಾಣ - ಇತ್ತೀಚಿನ ಸಾರಾಂಶಗಳು ಹಾಗೂ (ನಾಮ)ಪ್ರತಿಕ್ರಿಯೆಗಳು
  • Orgsyn.org, ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರ ಸಂಶ್ಲೇಷೀಕರಣ ವೈಜ್ಞಾನಿಕ ಪತ್ರಿಕೆ
  • Ochem4free.info, ಸಂಪೂರ್ಣ ಆನ್‌ಲೈನ್‌, ತಜ್ಞರಿಂದ-ವಿಮರ್ಶಿತ ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರದ ಲೇಖನಗಳ ಮೂಲತಾಣ
  • CEM.MSU.edu, ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರದ ಅವಾಸ್ತವ ಪುಸ್ತಕ
  • ವಿಶ್ವವ್ಯಾಪಿ ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರ ಸ್ರೋತಗಳು - ಕೊಂಡಿಗಳ ಸಂಗ್ರಹ
  • Thinkquest.org, ಇಂಗಾಲೀಯ/ಜೈವಿಕ/ಸಾವಯವ ಕುಟುಂಬಗಳು ಹಾಗೂ ಅವುಗಳ ಕಾರ್ಯಕಾರಿ ಗುಂಪುಗಳು
  • Organic.RogerFrost.com, ರೋಗ/ಜರ್‌ ಫ್ರಾಸ್ಟ್‌ರ ಆರ್ಗ್ಯಾನಿಕ್‌ ಕೆಮಿಸ್ಟ್ರಿ - ಮಲ್ಟಿಮೀಡಿಯಾ ಫಾರ್‌ ಟೀಚಿಂಗ್‌ ಅಂಡ್‌ ಲರ್ನಿಂಗ್‌
  • ChemHelper.com, ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರದ ಸಹಾಯ
  • Organic-Chemistry-Tutor.com, ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರ ಶಿಕ್ಷಕ
  • ACDlabs.com, ರಾಸಾಯನಿಕ ಉಚಿತ ತಂತ್ರಾಂಶ
  • Chemaxon.com, ಕೆಮ್‌ಆಕ್ಸಾನ್‌ನಿಂದ ರಾಸಾಯನಿಕ ಉಚಿತ ತಂತ್ರಾಂಶ.
  • AceOrganicChem.com,
  • OrgChemInfo.8k.com, ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರದ ಸ್ರೋತಗಳ ಸಂಗ್ರಹ
  • Benzylene.com, ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರ ಪ್ರಕ್ರಿಯೆಗಳು, ವಿಧಾನಗಳು, ಹಾಗೂ ಸಮಸ್ಯೆಗಳು
  • Beilstein-Journals.org, ಇಂಗಾಲೀಯ ರಸಾಯನಶಾಸ್ತ್ರದ ಬೇಲ್‌ಸ್ಟೇನ್‌ ವೈಜ್ಞಾನಿಕ ಪತ್ರಿಕೆ (ಮುಕ್ತ ಲಭ್ಯತೆ))
  1. REDIRECT Template:Branches of chemistry