ಫ್ರಾಕ್ಟಲ್‌

ವಿಕಿಪೀಡಿಯ ಇಂದ
ಇಲ್ಲಿಗೆ ಹೋಗು: ಸಂಚರಣೆ, ಹುಡುಕು
ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗೆ ಮಾಂಡೆಲ್‌ಬ್ರೋಟ್ ಸೆಟ್ ಒಂದು ಪ್ರಸಿದ್ಧ ಉದಾಹರಣೆ.


ಫ್ರಾಕ್ಟಲ್‌ ಎಂಬುದು "ಬಿರುಸಾದ ಅಥವಾ ಪದರಗಳಿರುವ ಭೌಗೋಳಿಕ ರಚನೆಯಾಗಿದೆ. ಇವುಗಳನ್ನು ಚೂರು ಚೂರುಗಳಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು. ಇದರ ಪ್ರತಿಯೊಂದು ಚೂರು ಕೂಡಾ (ಸಾಮಾನ್ಯವಾಗಿ ಸುಮಾರಾಗಿ)ಮೂಲ ಆಕೃತಿಯ ರೀತಿಯಲ್ಲೇ ಇರುತ್ತದೆ." ಪ್ರತಿಯೊಂದು ಸಣ್ಣ ಕಣ ಕೂಡಾ ಒಂದೇ ರೀತಿಯಲ್ಲಿರುವುದರಿಂದ ಕಣಗಳಲ್ಲಿ ’ಮೂಲ-ಹೋಲಿಕೆ’ ಇದೆ ಎಂದು ಹೇಳಬಹುದಾಗಿದೆ.[೧] ಫ್ರಾಕ್ಟಲ್‌ಗಳ ಕುರಿತಾದ ಉತ್ತಮವಾದ ತಿಳುವಳಿಕೆ ಮೂಡಿದ ವಿಷಯವನ್ನು ಪ್ರಸ್ತಾಪಿಸಬೇಕೇಂದರೆ ಕಾರ್ಲ್‌ ವೈರ್ಸ್‌ಟ್ರಾಸ್‌‍, ಜಾರ್ಜ್‌ ಕಾಂಟರ್‌ ಮತ್ತು ಫೆಲಿಕ್ಸ್‌ ಹೌಸ್‌ಡೊರ್ಫ್‌ ಅವರು ಕಾರ್ಯಗಳನ್ನು ಅಧ್ಯಯನ ಮಾಡಿದ ನಂತರದಲ್ಲಿ ಇವುಗಳ ಕುರಿತಾದ ಕುತೂಹಲ ಮೂಡಿತು ಎಂದು ಹೇಳಬಹುದಾಗಿದೆ. ಈ ಅಧ್ಯಯನದಲ್ಲಿ ಅವರು ಇವುಗಳ ವಿಶ್ಲೇಷಣಾತ್ಮಕವಾದ ಆದರೆ ಬೇರೆಬೇರೆಯಲ್ಲದ ಕಾರ್ಯಗಳನ್ನು ಅಧ್ಯಯನ ಮಾಡುವ ಸಂಧರ್ಬದಲ್ಲಿ ಕಂಡುಕೊಂಡರು. ಅದೇನೆ ಇದ್ದರೂ ’ಫ್ರಾಕ್ಟಲ್’ ಎಂಬ ಶಬ್ಧವನ್ನು ಬೆನೊಯಿಟ್ ಮ್ಯಾಂಡಲ್‌ಬ್ರೊಟ್‌‍ ೧೯೭೫ರಲ್ಲಿ ಪರಿಚಯಿಸಿದರು. ಈ ಶಬ್ಧವು ಲ್ಯಾಟಿನ್‌ನ ಫ್ರಾಕ್ಟಸ್‌ ಎಂಬ ಶಬ್ಧದಿಂದ (ಅರ್ಥ: ಮುರಿದ ಅಥವಾ ಸೀಳಾದ) ವ್ಯುತ್ಪತ್ತಿಯಾಗಿದೆ. ಗಣಿತದ ಫ್ರಾಕ್ಟಲ್‌ಗಳು ಪುನರಾವರ್ತನೆಯನ್ನು ಒಳಗೊಳ್ಳುವ ಸಮೀಕರಣವನ್ನು ಮೂಲವಾಗಿ ಹೊಂದಿರುತ್ತವೆ. ಇಲ್ಲಿ ಪ್ರತ್ಯಾವರ್ತನೆಯ ಆಧಾರದ ಪ್ರತಿಕ್ರಿಯೆಯನ್ನು ಪಡೆಯಲಾಗುತ್ತದೆ.[೨]

ಫ್ರಾಕ್ಟಲ್‌ಗಳು ಹೆಚ್ಚಾಗಿ ಈ ಕೆಳಗಿನ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಹೊಂದಿರುತ್ತವೆ:[೩]

ದೊಡ್ಡದು ಮಾಡಿ ನೋಡಿದಾಗ ಫ್ರಾಕ್ಟಲ್‌ನಲ್ಲಿಯ ಎಲ್ಲ ಪದರಗಳು ಒಂದೇ ರೀತಿಯಾಗಿ ಕಾಣಿಸಿಕೊಳ್ಳುತ್ತವೆ. ಫ್ರಾಕ್ಟಲ್‌ಗಳು ಅನಂತವಾಗಿ ಧ್ವಂದ್ವತೆಯಿಂದ ಕೂಡಿರುತ್ತವೆ.(ಸಾಮಾನ್ಯ ದೃಷ್ಟಿಯಲ್ಲಿ) ಫ್ರಾಕ್ಟಲ್‌ನಿಂದಾದ ಸ್ವಾಭಾವಿಕ ವಸ್ತುಗಳು ಹೆಚ್ಚಾಗಿ ಮೋಡಗಳು, ಗುಡ್ಡಗಳು, ಮಿಂಚು ಬಳ್ಳಿ, ಸಮುದ್ರತೀರ, ಮಂಜು ಪದರಗಳು, ಹಲವಾರು ತರಕಾರಿಗಳು (ಕಾಲಿಫ್ಲವರ್‌ ಮತ್ತು ಬ್ರೊಕೊಲಿ) ಮತ್ತು ಪ್ರಾಣಿಗಳಲ್ಲಿನ ಬಣ್ಣದ ವಿಧಾನಗಳನ್ನು ಉದಾಹರಿಸಬಹುದಾಗಿದೆ. ಅದೇನೆ ಇದ್ದರೂ, ಒಂದೇ ರೀತಿ ಕಾಣುವ ಎಲ್ಲ ವಸ್ತುಗಳು ಫ್ರಾಕ್ಟಲ್‌ಗಳಲ್ಲ, ಉದಾಹರಣೆಗೆ ನೈಜ ಗೆರೆ (ನೇರವಾದ ಯೂಕ್ಲಿಡಿಯನ್ ಗೆರೆ ) ಸಾಮಾನ್ಯವಾಗಿ ಒಂದೇರೀತಿಯದ್ದಾಗಿರುತ್ತದೆ ಆದರೆ ಇನ್ನುಳಿದ ಫ್ರಾಕ್ಟಲ್‌ನ ಗುಣಗಳನ್ನು ಇದು ಹೊಂದಿರುವುದಿಲ್ಲ. ಉದಾಹರಣೆಗೆ, ಇದನ್ನು ಯೂಕ್ಲಿಡಿಯನ್‌ ನಿಬಂಧನೆಯ ಪ್ರಕಾರ ವಿವರಿಸಬಹುದಾಗಿದೆ.

ಫ್ರಾಕ್ಟಲ್‌ಗಳನ್ನು ಉತ್ಪತ್ತಿ ಮಾಡುವ ಸಾಫ್ಟ್‌ವೇರ್‌ಗಳಿಂದ ಫ್ರಾಕ್ಟಲ್ ಚಿತ್ರಗಳನ್ನು ಉತ್ಪತ್ತಿ ಮಾಡಬಹುದಾಗಿದೆ. ಈ ರೀತಿಯ ಸಾಫ್ಟ್‌ವೇರ್‌ಗಳಿಂದ ಉತ್ಪತ್ತಿಯಾಗುವ ಚಿತ್ರಗಳನ್ನು ಫ್ರಾಕ್ಟಲ್‍ಗಳೆಂದು ಕರೆಯಲಾಗುತ್ತದೆ ಆದರೆ ಫ್ರಾಕ್ಟಲ್‌ನಲ್ಲಿಯ ಇತರೆ ಗುಣಗಳನ್ನು ಇದು ಹೊಂದಿರುವುದಿಲ್ಲ. ಉದಾಹರಣೆಗೆ, ಇದನ್ನು ದೊಡ್ಡದು ಮಾಡಿ ನೋಡಿದಾಗ ಇದರಲ್ಲಿ ಫ್ರಾಕ್ಟಲ್‌ನ ಯಾವುದೇ ಅಂಶಗಳು ಕಂಡು ಬರದೆ ಇರಬಹುದು. ಅಲ್ಲದೆ, ಇದು ಲೆಕ್ಕಾಚಾರ ಅಥವಾ ಪ್ರದರ್ಶನ ಕಲಾವಸ್ತುಗಳು ನೈಜವಾದ ಫ್ರಾಕ್ಟಲ್‌ಗಳ ಗುಣಗಳನ್ನು ಹೊಂದಿರುವುದಿಲ್ಲ.

ಇತಿಹಾಸ[ಬದಲಾಯಿಸಿ]

ಆ‍ಯ್‌ನಿಮೇಟೇಡ್ ಸೈರ್‌ಪಿನ್ಸ್ಕಿ ಟ್ರೈಯಾಂಗಲ್ ರಚನೆ, ಕೇವಲ ಕೊನೆಯಿಲ್ಲದ ಒಂಬತ್ತು ಪೀಳಿಗೆಯವರೆಗೆ——ದೊಡ್ಡ ಚಿತ್ರಕ್ಕಾಗಿ ಕ್ಲಿಕ್ಕಿಸಿ
ಕೋಚ್ ಹಿಮಸ್ಫಟಿಕಗಳನ್ನು ಸೃಷ್ಟಿಸಸಲು,ಒಂದು ಸಮಭುಜಾಕೃತಿಯ ತ್ರಿಭುಜದಿಂದ ಪ್ರಾರಂಭವಾಗಿ ನಂತರ ಪ್ರತಿ ಗೆರೆಯ ಮೂರುಭಾಗದ ಮಧ್ಯದ ಭಾಗವನ್ನು ಎರಡು ಜೊತೆಗೆರೆಗಳ ವಿಭಾಗದಿಂದ ಬದಲಾಯಿಸಿ ಒಂದು ಸಮಭುಜ "ಉಬ್ಬು" ನಿರ್ಮಾಣವಾಗುತ್ತದೆ.ಮತ್ತು ಇದೇ ರೀತಿಯ ಇನ್ನೊಂದು ಬದಲಾಗಿ ಪ್ರತಿ ಗೆರೆಯಭಾಗದ ಮೇಲೆ ಕೊನೆಯಿಲ್ಲದಂತೆ ಆಕ್ರುತಿಯನ್ನು ನಿರ್ಮಿಸುತ್ತದೆ.ಪ್ರತಿಯೊಂದು ಪುನರಾವರ್ತನೆಯು,ಮೊದಲಿನ ಸುತ್ತಳತೆಯ ಮೂರನೆಯ ಒಂದು ಭಾಗದಷ್ಟು ಹೆಚ್ಚಾಗುತ್ತದೆ.ಈ ರೀತಿಯ ಕೊನೆಗೊಳ್ಳದ ಪುನರಾವರ್ತನೆಯೇ ಕೋಚ್ ಹಿಮಸ್ಫಟಿಕದ ಸೃಷ್ಟಿಯಾಗಿದೆ, ಇದು ಕೊನೆಯಿಲ್ಲದಷ್ಟು ಉದ್ದವನ್ನು ಹೊಂದಿದ್ದು ನಿಯಮಿತ ಪ್ರದೇಷವನ್ನು ಹೊಂದಿರುತ್ತದೆ.ಈ ಕಾರಣಕ್ಕಾಗಿ,ಕೋಚ್ ಹಿಮಸ್ಫಟಿಕ ಮತ್ತು ಅದೇರೀತಿಯ ನಿರ್ಮಾಣಗಳು ಕೆಲವೊಮ್ಮೆ "ರಾಕ್ಷಸಾಕಾರದ ತಿರುವುಗಳು" ಎಂದು ಕರೆಯುತ್ತಿದ್ದರು.

ಫ್ರಾಕ್ಟಲ್‌ಗಳ ಹಿಂದಿನ ಗಣಿತಶಾಸ್ತ್ರದ ಸಂಬಂಧವು ಸುಮಾರು ೧೭ನೇ ಶತಮಾನದಲ್ಲಿ ಗಣಿತಶಾಸ್ತ್ರಜ್ಞ ಮತ್ತು ತತ್ವಜ್ಞಾನಿ ಗಾಟ್‌ಫ್ರೈಡ್‌ ಲೈಬ್‌ನಿಜ್‌ ಪ್ರತ್ಯಾವರ್ತನೆಮತ್ತು ಮೂಲ ಮಾದರಿ ಹೋಲಿಕೆಯನ್ನು ಮಂಡಿಸಿದಾಗ ಪ್ರಾರಂಭವಾಯಿತು.( ಆದಾಗ್ಯೂ ಅವನು ನೇರವಾದ ಗೆರೆ ಮಾತ್ರ ಈ ರೀತಿಯ ಮೂಲ ಮಾದರಿ ಹೋಲಿಕೆಯನ್ನು ಹೊಂದಿರುತ್ತದೆ ಎಂದು ತಪ್ಪು ಮಂಡನೆಯನ್ನು ಮಾಡಿದ.)

ಕಾರ್ಲ್‌ ವೈರ್ಸ್‌ಟ್ರಾಸ್‌ ಒಳಹರಿವುಇಲ್ಲದ ನಿರಂತರವಾಗಿರುವ ಆದರೆ ಎಲ್ಲಿಯೂ ವ್ಯತ್ಯಾಸವಿಲ್ಲದ ಉದಾಹರಣೆಯನ್ನು ಕೊಡುವ ಮೂಲಕ ಸುಮಾರು ೧೮೭೨ರವರೆಗೆ ಒಂದು ಕ್ರಿಯೆ ಬೆಳಕಿಗೆ ಬಂದಿದ್ದು ಅದರ ಗ್ರಾಫ್‌ ಅನ್ನು ಈ ದಿನದವರೆವಿಗೂ ಫ್ರಾಕ್ಟಲ್‌ ಎಂದು ಗುರುತಿಸಲಾಗುತ್ತದೆ. ೧೯೦೪ರಲ್ಲಿ, ಹೆಲ್ಜ್‌ ವೊನ್‌ ಕೋಚ್‌, ವೈರ್‌ಸ್ಟ್ರಾಟಸ್‌ನ ಅಸಂಗತ ಮತ್ತು ವಿಶ್ಲೇಷಣಾತ್ಮಕ ವಿವರಣೆಯಿಂದ ತೃಪ್ತನಾಗಲಿಲ್ಲ. ಇದರಿಂದ ಅವನು ಇನ್ನೂ ಹೆಚ್ಚಿನ ಜ್ಯಾಮಿತಿಯ ವ್ಯಾಖ್ಯೆಯನ್ನು ಇದೇ ರೀತಿಯ ಕಾರ್ಯಕ್ಕೆ ನೀಡಿದನು. ಇದು ಇಂದು ಕೋಚ್‌ ಕರ್ವ್ ಎಂದು ಕರೆಯಲ್ಪಡುತ್ತದೆ. (ಇಲ್ಲಿ ಬಲಗಡೆ ಇರುವ ಮೂರು ಕೋಚ್‌ ಕರ್ವ್‌ಗಳು ಒಟ್ಟಿಗೆ ಸೇರಿಸುವ ಮೂಲಕ ಸಾಮಾನ್ಯವಾಗಿ ಕರೆಯಲ್ಪಡುವ ಕೊಚ್‌ ಸ್ನೊಫ್ಲೇಕ್‌ಅನ್ನು ರಚಿಸಬಹುದಾಗಿದೆ.) ವಾಕ್ಲಾವ್‌ ಸೈರ್‌ಪಿನ್‌ಸ್ಕಿಯು ೧೯೧೫ರಲ್ಲಿ ಅವನ ತ್ರೀಭುಜವನ್ನು ರಚಿಸಿದನು. ನಂತರ ಒಂದು ವರ್ಷದ ನಂತರ ಕಾರ್ಪೆಟ್‌ರಚನೆ ಮಾಡಿದನು. ಮೂಲವಾಗಿ ಈ ಜ್ಯಾಮಿತಿಯ ಫ್ರಾಕ್ಟಲ್‌ಗಳನ್ನು ೨ ಆಯಾಮದ ಆಕೃತಿಗಳು ಎಂದು ಕರೆಯುವುದಕ್ಕಿಂತ ಹೆಚ್ಚಾಗಿ ಕರ್ವ್‌ಗಳೆಂದು ಆಧುನಿಕ ನಿರ್ಮಾಣ ರಂಗದಲ್ಲಿ ನಂಬಲಾಗುತ್ತದೆ. ಪೌಲ್‌ ಪೆರ್ರಿ ಲೆವಿಯವರು ಮೂಲ-ಮಾದರಿಯ ಹೋಲಿಕೆಯುಳ್ಳ ಕರ್ವ್‌ಗಳ ಕುರಿತಾದ ಆಲೋಚನೆಯನ್ನು ಮೊದಲು ಮಾಡಿದವರಾಗಿದ್ದಾರೆ. ಅದನ್ನುನ್ ಅವರು ೧೯೩೮ರಲ್ಲಿ ಮಂಡಿಸಿದ ’ಪ್ಲೇನ್‌ or ಸ್ಪೇಸ್‌ ಕರ್ವ್ಸ್‌ ಅಂಡ್‌ ಸರ್ಫೇಸ್‌ ಕನ್ಸಿಸ್ಟಿಂಗ್‌ ಆಫ್‌ ಪಾರ್ಟ್ಸ್‌‌ ಸಿಮಿಲರ್‌ ಟು ದಿ ಹೋಲ್‌" ಎಂಬ ಪ್ರಬಂಧದಲ್ಲಿ ಹೊಸ ಫ್ರಾಕ್ಟಲ್‌ ಕರ್ವ್‌ ಕುರಿತಾಗಿ ಬರೆದಿದ್ದಾರೆ. ಈ ರೀತಿಯ ಫ್ರಾಕ್ಟಲ್ ಕರ್ವ್‌ಗಳನ್ನು ಲೆವಿ‌ ಕರ್ವ್‌ಗಳೆಂದೇ ಕರೆಯಲಾಗುತ್ತದೆ. ಜಾರ್ಜ್‌ ಕ್ಯಾಂಟರ್‌ ಕೂಡಾ ನೈಜವಾದ ಗೆರೆಯ ಅಸ್ವಾಭಾವಿಕ ಗುಣಗಳ ಸಬ್‌ಸೆಟ್‌ಗಳ ಉದಾಹರಣೆಯನ್ನು ನೀಡಿದ್ದಾರೆ. ಈ ಕ್ಯಾಂಟರ್‌ ಸೆಟ್‌ಗಳನ್ನು ಫ್ರಾಕ್ಟಲ್‌ಗಳೆಂದು ಹೇಳಲಾಗುತ್ತದೆ.

ಹೆನ್ರಿ ಪಾಯಿನ್‌ಕೇರ್‌, ಫೆಲಿಕ್ಸ್‌ ಕ್ಲೈನ್‌, ಫಿಯರ್ರೇ ಫೌಟೌ ಮತ್ತು ಗ್ಯಾಸ್ಟೊನ್‌ ಜ್ಯೂಲಿಯಾ ಅವರಿಂದ ಬಹುಪದರರದ ಬಗ್ಗೆ ಹತ್ತೊಂಬತ್ತನೆಯ ಶತಮಾನದಲ್ಲಿ ಹಾಗೂ ಇಪ್ಪತ್ತನೆಯ ಶತಮಾನದಲ್ಲಿ ವಿವರವಾದ ಅಧ್ಯಯನ ನಡೆಯಿತು. ಆಧುನಿಕ ಕಂಪ್ಯೂಟರ್‌ ಗ್ರಾಫಿಕ್ಸ್‌ನ ಸಹಾಯವಿಲ್ಲದ್ದರಿಂದ ಅವರು ಬೆಳಕಿಗೆ ತಂದ ಸಾಕಷ್ಟು ವಸ್ತುಗಳ ಸೌಂಧರ್ಯವನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು ಸಾಧ್ಯವಾಗಲಿಲ್ಲ.

೧೯೬೦ರಲ್ಲಿ ಬೆನಾಯಿಟ್ ಮ್ಯಾಂಡಲ್‌ಬ್ರೋಟ್‌ ಮೂಲಮಾದರಿಯ ಹೋಲಿಕೆಯ ಬಗ್ಗೆ ಹೌ ಲಾಂಗ್‌ ಇಸ್‌ ದಿ ಕೋಸ್ಟ್‌ ಆಫ್‌ ಬ್ರಿಟನ್ ‌ ಮುಂತಾದ ಪ್ರಬಂಧಗಳಲ್ಲಿ ವಿಷಯ ಮಂಡಿಸಿದರು. ಸ್ಟಾಟಿಸ್ಟಿಕಲ್‌ ಸೆಲ್ಫ್-ಸಿಮಿಲ್ಯಾರಿಟಿ ಅಂಡ್ ಫ್ರಾಕ್ಷನಲ್ ಡೈಮೆನ್ಷನ್ ಇದು ಲೆವಿಸ್‌ ಫ್ರೈ ರಿಚರ್ಡ್‌ಸನ್‌ರಿಂದ ಬರೆಯಲ್ಪಟ್ಟ ಮೊದಲ ಪ್ರಬಂಧವಾಗಿದೆ. ಕೊನೆಯದಾಗಿ ೧೯೭೫ರಲ್ಲಿ ಮ್ಯಾಂಡಲ್‌ಬ್ರೋಟ್‌ ವಸ್ತುಗಳ ಹೌಸ್‌ಡೋರ್ಫ್‌‍-ಬೆಸಿಕೊವಿಚ್‌ ಆಯಾಮವು ಅವುಗಳ ಟ್ರೋಫೋಲೊಜಿಕಲ್‌ ಆಯಾಮಕ್ಕಿಂತ ಹೆಚ್ಚಾಗಿರುವ ವಸ್ತುಗಳನ್ನು ಗುರುತಿಸುವ ಸಲುವಾಗಿ ಫ್ರ್ಯಾಕ್ಟಲ್‌ ಶಬ್ಧವನ್ನು ಉಪಯೋಗಿಸುತ್ತಾನೆ. ಅವನು ಈ ಗಣಿತದ ವ್ಯಾಖ್ಯಾನವನ್ನು ಕಂಪ್ಯೂಟರೀಕೃತ ಚಿತ್ರಗಳಿಂದ ಉದಾಹರಣೆ ಸಹಿತವಾಗಿ ನೀಡಿದನು. ಈ ಚಿತ್ರಗಳು ಜನಪ್ರಿಯ ಕಲ್ಪನೆಯನ್ನು ಒಳಗೊಂಡಿದ್ದವು; ಅದರಲ್ಲಿಯ ಹಲವಾರು ಚಿತ್ರಗಳು ಪ್ರತ್ಯಾವರ್ತನೆಯ ಆಧಾರದಿಂದಾಗಿದ್ದವಾಗಿದ್ದು ’ಫ್ರ್ಯಾಕ್ಟಲ್” ಶಬ್ಧಕ್ಕೆ ಹೆಚ್ಚಿನ ಅರ್ಥವನ್ನು ನೀಡಿದವು.

ಉದಾಹರಣೆಗಳು[ಬದಲಾಯಿಸಿ]

ಜುಲಿಯಾ ಸೆಟ್,ಫ್ರಾಕ್ಟಲ್ ಮಾಂಡೇಲ್‌ಬ್ರೋಟ್ ಸೆಟ್‌ಗೆ ಸಂಬಂಧಿಸಿದೆ

ಕ್ಯಾಂಟರ್‌ ಸೆಟ್‌ಗಳಲ್ಲಿ ಅನೇಕ ಉದಾಹರಣೆಗಳನ್ನು ಕೊಡಲಾಗಿದೆ, ಸಿಯೆರ್‌‍ಪಿನ್‌ಸ್ಕಿ ತ್ರಿಕೋನ ಮತ್ತು ಕಾರ್ಪೆಟ್‌, ಮೆಂಜರ್‌ ಸ್ಪಾಂಜ್‌, ಡ್ರ್ಯಾಗನ್‌ ಕರ್ವ್‌, ಸ್ಪೇಸ್‌-ಫಿಲ್ಲಿಂಗ್‌ ಕರ್ವ್‌, ಮತ್ತು ಕೋಚ್‌ ಕರ್ವ್‌. ಫ್ರಾಕ್ಟಲ್‌ಗಳ ಹೆಚ್ಚುವರಿ ಉದಾಹರಣೆಗಳೆಂದರೆ ಲ್ಯಾಪುನೊವ್‌ ಫ್ರಾಕ್ಟಲ್‌ ಮತ್ತು ಕ್ಲೆನಿಯಾನ್‌ ಗುಂಪುಗಳ ನಿಯಮಿತ ಸೆಟ್‌ಗಳು. ಫ್ರಾಕ್ಟಲ್‌ಗಳು ಖಚಿತವಾದ (ಈ ಮೇಲಿನ ಎಲ್ಲ) ಅಥವಾ ಸ್ಟೊಕಾಸ್ಟಿಕ್‌ (ಅಂದರೆ, ಅಖಚಿತವಾದ) ಆದ ರೀತಿಯಲ್ಲಿರುತ್ತವೆ. ಉದಾಹರಣೆಗೆ, ಸಮತಲದಲ್ಲಿ ಬ್ರೌನಿಯನ್‌ ಚಲನೆಯ ಟ್ರ್ಯಾಜೆಕ್ಟರಿಗಳು ೨ರ ಹಾಸ್‌ಡಾರ್ಫ್‌ ಆಯಾಮವನ್ನು ಹೊಂದಿದೆ.

ಫ್ರಾಕ್ಟಲ್‌ಗಳೊಂದಿಗೆ ಕೆಲವೊಮ್ಮೆ ತೀವೃವಾದ ಬದಲಾವಣೆಯ ವ್ಯವಸ್ಥೆಗಳನ್ನು . ಬದಲಾಗುವ ವ್ಯವಸ್ಥೆಯ ಮುಂಚೂಣಿಯ ಸ್ಥಳದಲ್ಲಿರುವ ವಸ್ತುಗಳು ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳಾಗಿರಬಹುದು (ನೋಡಿ - ಅಟ್ರ್ಯಾಕ್ಟರ್‌). ಒಂದು ವ್ಯವಸ್ಥೆಗಳ ಗುಂಪಿನ ಒಂದು ಪ್ಯಾರಾಮೀಟರ್‌‍ ಜಾಗದಲ್ಲಿರುವ ವಸ್ತುಗಳೂ ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳಾಗಿರಬಹುದು. ಒಂದು ಕುತೂಹಲಕಾರಿ ಉದಾಹರಣೆಯೆಂದರೆ ಮ್ಯಾಂಡೆಲ್‌ಬ್ರೊಟ್‌ ಸೆಟ್‌. ಈ ಸೆಟ್‌ನಲ್ಲಿ ಸಂಪೂರ್ಣ ಮುದ್ರಿಕೆಗಳು ಇರುತ್ತವೆ, ಆದ್ದರಿಂದ ಇವು ಎರಡರ ಟೊಪೊಲಾಜಿಕಲ್‌ ಆಯಾಮಕ್ಕೆ ಸಮನಾದ ಹಾಸ್‌ಡೊರ್ಫ್‌ ಆಯಾಮವನ್ನೇ ಹೊಂದಿದೆ —ಆದರೆ ಆಶ್ಚರ್ಯಕರವಾದ ವಿಷಯವೆಂದರೆ ಮ್ಯಾಂಡೆಲ್‌ಬ್ರೊಟ್‌ ಸೆಟ್‌ನ ಗಡಿರೇಖೆ ಕೂಡ ಹಾಸ್‌ಡೊರ್ಫ್‌ನ ಎರಡರ ಆಯಾಮವನ್ನು ಹೊಂದಿದೆ (ಆದರೆ ಟೋಪೊಲಾಜಿಕಲ್‌ ಒಂದರ ಆಯಾಮವನ್ನು ಹೊಂದಿದೆ) - ಇದು ಮಿತ್ಸುಹಿರೊ ಶಿಶಿಕುರರವರು ೧೯೯೧ರಲ್ಲಿ ಸಿದ್ಧ ಮಾಡಿ ತೋರಿಸಿದ ಫಲಿತಾಂಶ. ಜೂಲಿಯಾ ಸೆಟ್‌ ಅತಿ ಹತ್ತಿರ ಸಂಬಂಧಿತವಾದ ಫ್ರ್ಯಾಕ್ಟಲ್‌ .

ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳನ್ನು ಸೃಷ್ಟಿಸುವುದು[ಬದಲಾಯಿಸಿ]

ಪೂರ್ಣ ಮಾಂಡೇಲ್‌ಬ್ರೋಟ್ ಸೆಟ್‌
ಮಾಂಡೆಲ್‌ಬ್ರೋಟ್ ಜೂಮ್ ಮಾಡಿದ 6x
ಮಾಂಡೆಲ್‌ಬ್ರೋಟ್ ಜೂಮ್ ಮಾಡಿದ 100x
ಮಾಂಡೆಲ್‌ಬ್ರೋಟ್ ಜೂಮ್ ಮಾಡಿದ 2000x ೨೦೦೦ ಸಾರಿ ಪ್ರವರ್ಧನ ಮಾಡಿದರೂ ಮ್ಯಾಂದೆಲ್‌ಬ್ರೋಟ್‌ ಸೆಟ್‌ ಪೂರ್ಣ ಸೆಟ್‌ಅನ್ನು ಹೋಲುವ ವಿವರವನ್ನು ತೋರಿಸುತ್ತದೆ.

ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳನ್ನು ಸೃಷ್ಟಿಸುವ ನಾಲ್ಕು ಸಾಮಾನ್ಯ ತಂತ್ರಗಳೆಂದರೆ:

ವರ್ಗೀಕರಣ[ಬದಲಾಯಿಸಿ]

ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳನ್ನು ಅವುಗಳ ಸ್ವಯಂ-ಸಾದೃಶ್ಯದ ಆಧಾರದ ಮೇಲೆ ಕೂಡ ವಿಂಗಡಿಸಬಹುದು. ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳಲ್ಲಿ ಮೂರು ವಿಧದ ಸ್ವಯಂ-ಸಾದೃಶ್ಯಗಳನ್ನು ಕಾಣಬಹುದು:

  • ತದ್ರೂಪು ಸ್ವಯಂ-ಸಾದೃಶ್ಯ – ಇದು ಸ್ವಯಂ-ಸಾದೃಶ್ಯದ ಪ್ರಬಲ ವಿಧಾನ; ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳು ಬೇರೆ ಬೇರೆ ಅಳತೆಯಲ್ಲಿ ಒಂದೇ ರೀತಿಯಾಗಿ ಕಾಣುತ್ತವೆ. ಪುನರಾವರ್ತಿತ ಉತ್ಪನ್ನವಾಕ್ಯದ ವ್ಯವಸ್ಥೆಗಳು ಸಾಮಾನ್ಯವಾಗಿ ತದ್ರೂಪು ಸ್ವಯಂ-ಸಾದೃಶ್ಯವನ್ನು ತೋರುತ್ತದೆ. ಉದಾಹರಣೆಗೆ, ಸಿಯೆರ್‌ಪಿನ್‌ಸ್ಕಿ ತ್ರಿಕೋನ ಮತ್ತು ಕೊಚ್‌ ಮಂಜುಚಕ್ಕೆಗಳು ತದ್ರೂಪು ಸ್ವಯಂ ಸಾದೃಶ್ಯಗಳನ್ನು ತೋರುತ್ತವೆ.
  • ಪಾರ್ಶ್ವ-ಸ್ವಯಂ-ಸಾದೃಶ್ಯ – ಇದು ಸ್ವಯಂ-ಸಾದೃಶ್ಯದ; ಫ್ರ್ಯಾಕ್ಟಲ್‌ ಸರಿಸುಮಾರಾಗಿ ಬೇರೆ ಬೇರೆ ಅಳತೆಗಳಲ್ಲಿ ಒಂದೇ ರೀತಿಯಾಗಿ ಕಾಣುತ್ತದೆ (ಆದರೆ ಯಥಾವತ್ತಾಗಿ ಅಲ್ಲ). ಪಾರ್ಶ್ವ-ಸ್ವಯಂ-ಸಾದೃಶ್ಯ ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳು ಸಂಪೂರ್ಣ ಫ್ರ್ಯಾಕ್ಟಲ್‌ಅನ್ನು ಸಣ್ಣ ಪ್ರತಿಗಳಲ್ಲಿ ವಿಕೃತ ರೂಪಗಳಲ್ಲಿ ಹೊಂದಿರುತ್ತವೆ. ಪುನರಾವರ್ತನ ಸಂಬಂಧಗಳು ವ್ಯಾಖ್ಯಾನಿಸುವ ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳು ಸಾಮಾನ್ಯವಾಗಿ ಪಾರ್ಶ್ವ-ಸ್ವಯಂ-ಸದೃಶವಾಗಿರುತ್ತದೆ ಆದರೆ ತದ್ರೂಪು ಸ್ವಯಂ-ಸದೃಶವಾಗಿರುವುದಿಲ್ಲ. ಮ್ಯಾಂಡೆಲ್‌ಬ್ರೊಟ್‌ ಸೆಟ್‌ ಪಾರ್ಶ್ವ-ಸ್ವಯಂ-ಸಾದೃಶ್ಯವನ್ನು ಹೊಂದಿದೆ, ಉಪಪ್ರತಿಗಳು ಯಥಾವತ್‌ ಆಗಿರದೆ ಸರಿಸುಮಾರಾಗಿ ಸಂಪೂರ್ಣ ಸೆಟ್‌ಅನ್ನು ಹೋಲುತ್ತದೆ.
  • ಸಂಖ್ಯಾಶಾಸ್ತ್ರೀಯ ಸ್ವಯಂ-ಸಾದೃಶ್ಯ – ಇದು ಸ್ವಯಂ ಸಾದೃಶ್ಯದ ಅತ್ಯಂತ ದುರ್ಬಲ ವಿಧ; ವಿವಿಧ ಅಳತೆಗಳಲ್ಲಿ ಕಾಪಾಡಿಕೊಂಡು ಬರುವ ಅಂಕೆಗಳ ಅಥವಾ ಸಂಖ್ಯಾಶಾಸ್ತ್ರೀಯ ಮಾನಗಳನ್ನು ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳು ಹೊಂದಿವೆ. "ಫ್ರ್ಯಾಕ್ಟಲ್‌"ನ ಅತಿ ಸಮಂಜಸವಾದ ವ್ಯಾಖ್ಯಾನಗಳು ಒಂದಲ್ಲ ಒಂದು ರೀತಿಯ ಸಂಖ್ಯಾಶಾಸ್ತ್ರೀಯ ಸ್ವಯಂ-ಸಾದೃಶ್ಯವನ್ನು ಧ್ವನಿಸುತ್ತದೆ. (ಫ್ರ್ಯಾಕ್ಟಲ್‌ ಆಯಾಮ ಎನ್ನುವುದೇ ವಿವಿಧ ಅಳತೆಗಳಲ್ಲಿ ಉಳಿದುಕೊಳ್ಳುವ ಅಂಕೆಗಳ ಮಾನ.) ಯಾದೃಚ್ಛಿಕ ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳು ಸಂಖ್ಯಾಶಾಸ್ತ್ರೀಯವಾಗಿ ಸ್ವಯಂ-ಸದೃಶವಾದ, ಆದರೆ ತದ್ರೂಪು ಅಥವಾ ಪಾರ್ಶ್ವ-ಸ್ವಯಂ-ಸದೃಶವಲ್ಲದ ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳು. ಬ್ರಿಟನ್ನಿನ ಕರಾವಳಿ ಸಾಲು ಇದಕ್ಕೆ ಮತ್ತೊಂದು ಉದಾಹರಣೆ; ಕರಾವಳಿಯ ಒಂದು ಭಾಗವನ್ನು ಬೂದುಗನ್ನಡಿಯಿಂದ ನೋಡುತ್ತ ಸೂಕ್ಷ್ಮಬ್ರಿಟನ್‌ಗಳು ಕಾಣುತ್ತವೆಂದು ಯಾರೂ ಅಪೇಕ್ಷಿಸಲು ಸಾಧ್ಯವಿಲ್ಲ.

ಒಂದು ವಸ್ತುವನ್ನು ಫ್ರ್ಯಾಕ್ಟಲ್‌ ಎಂದು ಕರೆಯಲು ಸ್ವಯಂ-ಸಾದೃಶ್ಯವೊಂದು ಇದ್ದರೇ ಸಾಲದು. ಸ್ವಯಂ-ಸಾದೃಶ್ಯವಿದ್ದರೂ ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳಲ್ಲದ ವಸ್ತುಗಳಿಗೆ ಉದಾಹರಣೆಯೆಂದರೆ ಲಘುಗಣಕ ಸುರುಳಿ ಮತ್ತು ಸರಳ ರೇಖೆಗಳು, ಇವುಗಳಲ್ಲಿ ತಮ್ಮದೇ ತದ್ರೂಪುಗಳು ಹೆಚ್ಚುತ್ತಿರುವ ಸಣ್ಣ ಅಳತೆಗಳಲ್ಲಿ ಇರುವುದಿಲ್ಲ. ಇವು ಭೂಸಮಿತಿಯ ಆಯಾಮದಂತೆಯೇ ಹಾಸ್‌ಡೋರ್ಫ್‌ ಆಯಾಮವನ್ನು ಹೊಂದಿರುವುದರಿಂದ ಫ್ರ್ಯಾಕ್ಟಲ್‌ ಎಂದು ಕರೆಯಲು ಅರ್ಹವಾಗುವುದಿಲ್ಲ.

ಪ್ರಕೃತಿಯಲ್ಲಿ[ಬದಲಾಯಿಸಿ]

ಪ್ರಕೃತಿಯಲ್ಲಿ ಸರಿಸುಮಾರಾದ ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳನ್ನು ಸುಲಭವಾಗಿ ಕಾಣಬಹುದು. ಈ ವಸ್ತುಗಳು ಸ್ವಯಂ-ಸದೃಶ ರಚನೆಗಳನ್ನು ವಿಸ್ತೃತ, ಆದರೆ ಪರಿಮಿತ, ಪರಿಮಾಣ ಶ್ರೇಣಿಯನ್ನು ಪ್ರದರ್ಶಿಸುತ್ತವೆ. ಇದಕ್ಕೆ ಉದಾಹರಣೆಗಳೆಂದರೆ ಮೋಡಗಳು, ಮಂಜಿನ ಚಕ್ಕೆಗಳು , ಸ್ಫಟಿಕಗಳು, ಪರ್ವತ ಶ್ರೇಣಿಗಳು, ಮಿಂಚು, ನದಿಜಾಲಗಳು, ಹೂಕೋಸು ಅಥವಾ ಕೋಸುಗಡ್ಡೆ, ಮತ್ತು ರಕ್ತನಾಳಗಳ ಮತ್ತು ಶ್ವಾಸನಾಳಗಳ ವ್ಯವಸ್ಥೆಗಳು. ಕರಾವಳಿಸಾಲುಗಳನ್ನು ಪ್ರಕೃತಿಯಲ್ಲಿನ ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳೆಂದು ಪರಿಗಣಿಸಬಹುದು.

ಮರಗಳು ಮತ್ತು ಜರಿಗಿಡಗಳು ಪ್ರಕೃತಿಯಲ್ಲಿನ ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳು, ಪುನರಾವರ್ತಿತ ಕ್ರಮಾವಳಿಯನ್ನು ಬಳಸಿಕೊಂಡು ಕಂಪ್ಯೂಟರ್‌ಗಳಲ್ಲಿ ಅವುಗಳ ಪ್ರತಿರೂಪಗಳನ್ನು ನಿರ್ಮಿಸಬಹುದು. ಈ ಪುನರಾವರ್ತನಾ ಸ್ವಭಾವವು ಉದಾಹರಣೆಗಳಲ್ಲಿ ಸ್ಪಷ್ಟ - ಒಂದು ಮರದ ಕೊಂಬೆ ಅಥವಾ ಜಾರುಗಿಡದ ಎಲೆಯು ಸಮಗ್ರದ ಒಂದು ಸಣ್ಣಳತೆ ಪ್ರತಿಕೃತಿ: ಅಭಿನ್ನವಲ್ಲ, ಆದರೆ ಸ್ವಭಾವದಲ್ಲಿ ಹೋಲುತ್ತವೆ. ಈಗ ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳು ಮತ್ತು ಎಲೆಗಳ ನಡುವಿನ ಸಂಬಂಧವನ್ನು ಬಳಸಿಕೊಂಡು ಮರಗಳಲ್ಲಿ ಎಷ್ಟು ಇಂಗಾಲ ಇದೆ ಎಂಬುದನ್ನು ನಿರ್ಧರಿಸಲಾಗುತ್ತದೆ.[೫]

೧೯೯೯ರಲ್ಲಿ, ಕೆಲವು ಸ್ವಯಂ-ಸದೃಶ ಫ್ರ್ಯಾಕ್ಟಲ್‌ ಆಕಾರಗಳು "ಪುನರಾವರ್ತನ ನಿರ್ವ್ಯತ್ಯಯ" ಗುಣವನ್ನು ಹೊಂದಿರುವುದು ಕಂಡುಬಂತು — ಪುನರಾವರ್ತನ ಏನೇ ಆಗಿದ್ದರೂ ಅದೇ ವಿದ್ಯುದಯಸ್ಕಾಂತ ಗುಣಲಕ್ಷಣಗಳು ಇರುತ್ತವೆ — ಮ್ಯಾಕ್ಸ್‌ವೆಲ್‌ನ ಸಮೀಕರಣಗಳಿಂದ (ನೋಡಿ ಫ್ರ್ಯಾಕ್ಟಲ್‌ ಆಂಟೆನಾ).[೬]

ಕ್ರಿಯಾತ್ಮಕ ಕೃತಿಗಳಲ್ಲಿ[ಬದಲಾಯಿಸಿ]

ಅಮೆರಿಕಾದ ಕಲಾವಿದ ಜ್ಯಾಕ್ಸನ್‌ ಪಾಲೊಕ್‌ನ ಚಿತ್ರಗಳಲ್ಲಿ ಫ್ರ್ಯಾಕ್ಟಲ್‌ನ ನಮೂನೆಗಳು ಕಂಡುಬರುತ್ತವೆ. ಪಾಲೋಕ್‌ನ ಚಿತ್ರಗಳು ಅವ್ಯಸ್ಥಿತ ಹನಿಬೀಳುವಿಕೆ ಮತ್ತು ತಟ್ಟುವಿಕೆಯಿಂದ ಮಾಡಲಾಗಿದೆ ಎನ್ನಲಾಗುತ್ತದೆ; ಕಂಪ್ಯೂಟರ್‌ ವಿಶ್ಲೇಷಣೆಯು ಆತನ ಕೆಲಸಗಳಲ್ಲಿ ಫ್ರ್ಯಾಕ್ಟಲ್‌ ನಮೂನೆಗಳನ್ನು ಗುರುತಿಸಿದೆ.[೭]

ಮ್ಯಾಕ್ಸ್‌ ಎರ್ನ್ಸ್ಟ್‌ ಮುಂತಾದ ಕಲಾವಿದರು ಉಪಯೋಗಿಸುವ ಡಿಕಾಲ್‌ಕೊಮೇನಿಯಾ ತಂತ್ರವು ಫ್ರ್ಯಾಕ್ಟಲ್‌ನಂತಹ ನಮೂನೆಗಳನ್ನು ಸೃಷ್ಟಿಸಬಲ್ಲುದು.[೮] ಇದರಲ್ಲಿ ಬಣ್ಣವನ್ನು ಎರಡು ಮೇಲ್ಮೈಗಳ ಮಧ್ಯೆ ಅಮುಕಿ ನಂತರ ಅವುಗಳನ್ನು ಬೇರ್ಪಡಿಸಬೇಕು.

ಆಫ್ರಿಕಾ ಕಲೆ ಮತ್ತು ವಾಸ್ತುಕಲೆಗಳಲ್ಲಿಯೂ ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳು ಕಾಣುತ್ತವೆ. ವರ್ತುಲಾಕಾರದ ಮನೆಗಳು ವರ್ತುಲಗಳ ವರ್ತುಲಗಳೋಳಗೆ ಇರುತ್ತವೆ, ಆಯತಾಕಾರದ ಮನೆಗಳು ಆಯತಗಳ ಆಯತಗಳಲ್ಲಿ ಮೊದಲಾಗಿ. ಅಂತಹ ನಮೂನೆಗಳನ್ನು ಆಫ್ರಿಕಾದ ಉಡುಗೆ, ಶಿಲ್ಪ, ಮತ್ತು ಜೋಳದಸಾಲು ಕೇಶವಿನ್ಯಾಸದಲ್ಲೂ ಕಾಣಬಹುದು.[೯]

೧೯೯೬ರ ಸಂದರ್ಶನವೊಂದರಲ್ಲಿ ಡೇವಿಡ್‌ ಫೋಸ್ಟರ್‌ ವಾಲೇಸ್‌, ತನ್ನ ಶ್ರೇಷ್ಠ ಕೃತಿ ಇನ್‌ಫೈನೈಟ್‌ ಜೆಸ್ಟ್‌ನ ರಚನೆಯು ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳಿಂದ ಪ್ರೇರಿತವಾದದ್ದು ಎಂದು ಒಪ್ಪಿಕೊಂಡಿದ್ದಾನೆ, ವಿಶೇಷವಾಗಿ ಸಿಯರ್‌ಪಿನ್‌ಸ್ಕಿ ತ್ರಿಕೋನ.[೧೦]

ಫೋರ್‌ ಟೆಟ್‌ ಕಲಾವಿದನ, ಪಾಸ್‌ (ಆಲ್ಬಂ‌)ನ ಹಾಡು "ಹಿಲೇರಿಯಸ್‌ ಮೂವಿ ಆಫ್‌ ದ ನೈನ್‌ಟೀಸ್‌" ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳ ಉಪಯೋಗವನ್ನು ಬಳಸಿಕೊಳ್ಳುತ್ತದೆ.[೧೧]

ಉಪಯೋಗಗಳು[ಬದಲಾಯಿಸಿ]

ಮೇಲೆ ವರ್ಣಿಸಿದಂತೆ, ಯಾದೃಚ್ಛಿಕ ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳನ್ನು ಅತಿ-ಅನಿಯಮಿತ ನಿಜ-ಪ್ರಪಂಚದ ವಸ್ತುಗಳನ್ನು ವರ್ಣಿಸಲು ಬಳಸಬಹುದು. ಫ್ರ್ಯಾಕ್ಟಲ್‌ಗಳ ಇತರ ಉಪಯೋಗಗಳೆಂದರೆ:[೧೨]

ಇವನ್ನೂ ಗಮನಿಸಿ[ಬದಲಾಯಿಸಿ]

ಆಕರಗಳು[ಬದಲಾಯಿಸಿ]

  1. Mandelbrot, B.B. (1982). The Fractal Geometry of Nature. W.H. Freeman and Company. ISBN 0-7167-1186-9. 
  2. Briggs, John (1992). Fractals:The Patterns of Chaos. London : Thames and Hudson, 1992. p. 148. ISBN 0500276935, 0500276935 Check |isbn= value (help). 
  3. Falconer, Kenneth (2003). Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons, Ltd. xxv. ISBN 0-470-84862-6. 
  4. ಹಿಲ್ಬರ್ಟ್‌ರ ತಿರುವು ನಕ್ಷೆಯು ಹೊಮಿಯೊಮಾರ್ಪಿಸಂ ಅಲ್ಲ , ಆದ್ದರಿಂದ ಇದು ಸ್ಥಳಶಾಸ್ತ್ರೀಯ ವಿಸ್ತೀರ್ಣವನ್ನು ರಕ್ಷಿಸುವುದಿಲ್ಲ. ಹಿಲ್ಬರ್ಟ್ ನಕ್ಷೆಯಲ್ಲಿನ ಆರ್ ೨ ಎರಡರ ಚಿತ್ರ ಸ್ಥಳಶಾಸ್ತ್ರೀಯ ವಿಸ್ತೀರ್ಣ ಮತ್ತು ಹೌಸ್‌ಡಾರ್ಫ್ ವಿಸ್ತೀರ್ಣ ಟಿಪ್ಪಣಿ,ಹಾಗಿದ್ದಾಗ್ಯೂ, ಹಿಲ್ಬರ್ಟ್ ನಕ್ಷೆಯ ಗ್ರಾಫ್‌ ನ ಸ್ಥಳಶಾಸ್ತ್ರೀಯ ವಿಸ್ತೀರ್ಣ (ಆರ್ ) ೧ನಲ್ಲಿ ಗೊತ್ತುಪಡಿಸಲಾಗಿದೆ..
  5. "ಮರೆಮಾಚಿದ ವಿಸ್ತೀರ್ಣದ ಶೋಧನೆ." ನೋವಾ . ಪಿಬಿಎಸ್. ಡಬ್ಲ್ಯೂಪಿಎಮ್‌ಬಿ-ಮೇರಿ‌ಲ್ಯಾಂಡ್. ೧೨ ಅಕ್ಟೋಬರ‍್ ೨೦೦೫
  6. Hohlfeld R, Cohen N (1999). "Self-similarity and the geometric requirements for frequency independence in Antennae". Fractals 7 (1): 79–84. doi:10.1142/S0218348X99000098. 
  7. ರಿಚರ್ಡ್ ಟೇಲರ್,ಅದಾಮ್ ಪಿ. ಮಿಕೊಲಿಚ್ ಆ‍ಯ್‌೦ಡ್ ಡೇವಿಡ್ ಜೊನಸ್. ಫ್ಯ್ರಾಕ್ಟಲ್ ಎಕ್ಸ್‌ಪ್ರೆಷನ್ : ಕ್ಯಾನ್ ಸೈನ್ಸ್ ಬಿ ಯುಸ್ಡ್ ಟು ಫರ್ದರ್ ಅವರ್ ಅಂಡರ್‌ಸ್ಟ್ಯಾಂಡಿಂಗ್ ಆಫ್ ಆರ್ಟ್?
  8. ಮಿಶೆಲ್ ಫ್ರೇಮ್ ಮತ್ತು ಬೆನೊಯ್ಟ್ ಬಿ. ಮಾಂಡೆಲ್‌ಬ್ರೋಟ್‌ರಿಂದ ಫ್ಯ್ರಾಕ್ಟಲ್ಸ್‌ನ ಸಮಗ್ರ ನೋಟ ಮತ್ತು ಅದರ ಉಪಯೋಗಗಳು
  9. ರೊನ್ ಇಗ್ಲಾಸ್.ಆಫ್ರಿಕನ್ ಫ್ರ್ಯಾಕ್ಟಲ್ಸ್: ಮಾಡರ್ನ್ ಕಂಪ್ಯೂಟಿಂಗ್ ಆ‍ಯ್‌೦ಡ್ ಇಂಡಿಜನ್ಸ್ ಡಿಸೈನ್ ನ್ಯೂ ಬ್ರನ್ಸ್‌ವಿಚ್: ರುಟ್ಜರ್ಸ್ ವಿಶ್ವವಿದ್ಯಾಲಯ ಮುದ್ರಣಾಲಯ 1999.
  10. http://www.kcrw.com/etc/programs/bw/bw960411david_foster_wallace
  11. http://lala.com/zVPSY
  12. "Applications". Retrieved 2007-10-21. 

ಹೆಚ್ಚಿನ ಮಾಹಿತಿಗಾಗಿ[ಬದಲಾಯಿಸಿ]

  • ಬರ್ನ್ಸಲೆ, ಮಿಶೇಲ್ ಎಫ್.,ಮತ್ತು ಹವ್ಲೆಯ್ ರೈಸಿಂಗ್. ಫ್ರ್ಯಾಕ್ಟಲ್ ಎವ್ರಿವ್ಯಾರ್ . ಬೋಸ್ಟನ್: ಅಕಾಡೆಮಿಕ್ ಪ್ರೆಸ್ ಪ್ರೋಫೆಶನಲ್, ೧೯೯೩. ISBN ೦-೬೪೩-೦೬೯೬೯-೦
  • ಫ್ಯಾಲ್ಕೊನರ್,ಕೆನೆಥ್. ಟೆಕ್ನಿಕ್ಸ್ ಇನ್ ಫ್ರ್ಯಾಕ್ಟಲ್ ಜಿಯಾಮೆಟ್ರಿ . ಜಾನ್ ವಿಲ್ಲೆ ಮತ್ತು ಸನ್ಸ್, ೧೯೯೭. ISBN ೦-೬೪೩-೦೬೯೬೯-೦
  • ಜರ್ಗನ್ಸ್, ಹರ್ಟ್‌ಮನ್,ಹೇನ್ಸ್-ಒಟ್ಟೊ,ಮತ್ತು ಡಯೆಟ್ಮರ್ ಸುಪೆ . ಚಾವೊಸ್ ಆ‍ಯ್‌೦ಡ್ ಫ್ಯ್ರಾಕ್ಟಲ್ಸ್:ನ್ಯೂ ಫ್ರಂಟೀಯರ್ಸ್ ಆಫ್ ಸೈನ್ಸ್ . ನ್ಯೂಯಾರ್ಕ್: ಸ್ಪ್ರಿಂಗರ್-ವೆರ್ಲಾಗ್, ೧೯೯೨. ISBN ೧-೮೫೬೧೯-೨೭೮-೪.
  • ಬೆನೊಯ್ಟ್ ಬಿ. ಮೆಂಡೆಲ್‌ಬ್ರೋಟ್ ದ ಫ್ರ್ಯಾಕ್ಟಾಲ್ ಜಿಯೊಮೆಟ್ರಿ ಆಫ್ ನೇಚರ್ . ನ್ಯೂಯಾರ್ಕ್: ಡಬ್ಲ್ಯೂ. ಎಚ್. ಫ್ರೀಮನ್ ಮತ್ತು ಕಂ., ೧೯೮೨. ISBN ೦-೬೪೩-೦೬೯೬೯-೦
  • ಪೆಟ್ಗೆನ್, ಹೇನ್ಸ್-ಒಟ್ಟೊ,ಮತ್ತು ಡಯೆಟ್ಮರ್ ಸುಪೆ, eds. ದ ಸೈನ್ಸ್ ಆಫ್ ಫ್ಯ್ರಾಕ್ಟಲ್ ಇಮೇಜಸ್ . ನ್ಯೂಯಾರ್ಕ್: ಸ್ಪ್ರಿಂಗರ್-ವೆರ್ಲಾಗ್, ೧೯೮೮. ISBN ೦-೬೪೩-೦೬೯೬೯-೦
  • ಕ್ಲಿಫೋರ್ಡ್ ಎ. ಪಿಕೊವರ್ , ed. ಚಾವೊಸ್ ಆ‍ಯ್‌೦ಡ್ ಫ್ಯ್ರಾಕ್ಟಲ್ಸ್: ಎ ಕಂಪ್ಯೂಟರ್ ಗ್ರಾಫಿಕ್ ಜರ್ನಿ - ಎ ೧೦ ಇಯರ್ಸ್ ಕಾಂಪಿಟೇಶನ್ ಆಫ್ ಅಡ್ವಾನ್ಸ್ಡ್ ರಿಸರ್ಚ್ . ಎಲ್ಸೆವಿಯರ್:೨೦೦೪ ISBN ೦-೬೪೩-೦೬೯೬೯-೦
  • ಜಿಸ್ಸೆ ಜೋನ್ಸ್, ಫ್ರ್ಯಾಕ್ಟಲ್ ಫಾರ್ ದ ಮಸಿಂಟೋಶ್ , ವೈಟ್ ಗ್ರುಪ್ ಪ್ರೆಸ್, ಕೋರ್ಟ್ ಮದೆರಾ,ಸಿಎ ೧೯೯೩. ISBN ೧-೮೫೬೧೯-೨೭೮-೪.
  • ಹನ್ಸ್ ಲುವೆರಿಯರ್ , ಫ್ರ್ಯಾಕ್ಟಲ್ಸ್: ಎಂಡ್‌ಲೆಸ್ಲಿ ರೀಪಿಟೇಡ್ ಜಿಯೊಮೆಟ್ರಿಕಲ್ ಫಿಗರ್ಸ್ , ಸೋಫಿಯಾ ಗಿಲ್-ಹಾಪ್‌ಸ್ಟ್ಯಾಂಟ್‌ರಿಂದ ಅನುವಾದ, ಪಿನ್ಸ್‌ಟನ್ ವಿಶ್ವವಿದ್ಯಾಲಯ ಮುದ್ರಣಾಲಯ,ಪಿನ್ಸ್‌ಟನ್ ಎನ್‌ಜೆ, ೧೯೯೧. ISBN ೦-೬೯೧-೦೮೫೫೧-X, ಬಟ್ಟೆ. ISBN ೦-೬೯೧-೦೨೪೪೫-೬ ಪೇಪರ್‌ಬ್ಯಾಕ್. "ವಿಶಾಲವಾದ ಪ್ರೇಕ್ಷಕರಿಗಾಗಿ ಈ ಪುಸ್ತಕ ಬರೆಯಲಾಗಿದೆ..." ಅನುಬಂಧದಲ್ಲಿ ಮಾದರಿ ಬೇಸಿಕ್ ಪ್ರೋಗ್ರಾಮ್ ಒಳಗೊಂಡಿದೆ.
  • Sprott, Julien Clinton (2003). Chaos and Time-Series Analysis. Oxford University Press. ISBN 0-19-850839-5 and ISBN 978-0-19-850839-7 Check |isbn= value (help). 
  • ಬೆರ್ನಂಟ್ ವಾಲ್, ಪೀಟರ್ ವನ್ ರಾಯ್, ಮಿಶೆಲ್ ಲಾರ್ಸೆನ್, ಮತ್ತು ಎರಿಕ್ ಕಂಪ್‌ಮ್ಯಾನ್ ಎಕ್ಸ್‌ಪ್ಲೋರಿಂಗ್ ಫ್ಯ್ರಾಕ್ಟಲ್ಸ್ ಆನ್ ದ ಮಸಿಂಟೋಶ್ , ಎಡಿಸನ್ ವೆಸ್ಲೆ, ೧೯೯೫. ISBN ೦-೦೬-೦೭೨೪೫೩-೬
  • ನಿಗೆಲ್ ಲೆಸ್ಮಯರ್ -ಗೋರ್ಡೋನ್. "ದ ಕಲರ್ಸ್ ಆಫ್ ಇನ್ಫಿನಿಟಿ: ದ ಬ್ಯೂಟಿ,ದ ಪವರ್ ಆ‍ಯ್‌೦ಡ್ ದ ಸೆನ್ಸ್ ಆಫ್ ಫ್ರ್ಯಾಕ್ಟಲ್ಸ್." ISBN ೧-೯೦೪೫೫೫-೦೫-೫ (ಆಥರ್ ಸಿ. ಕ್ಲಾರ್ಕ್‌ರ ಫ್ಯ್ರಾಕ್ಟಲ್ ಪರಿಕಲ್ಪನೆ ಮತ್ತು ಮಾಂಡೇಲ್‌ಬ್ರೋಟ್ ಸೆಟ್ ಸಾಕ್ಷಿಚಿತ್ರ ಪ್ರಸ್ತಾವನೆಗೆ ಸಂಬಂಧಿತ ಡಿವಿಡಿ ಜೊತೆಗೆ ಪುಸ್ತಕ.
  • ಗೊಯೆಟ್,ಜೀನ್-ಫ್ರ್ಯಕೊಯ್ಸ್. ಫಿಸಿಕಲ್ ಆ‍ಯ್‌೦ಡ್ ಫ್ರ್ಯಾಕ್ಟಲ್ ಸ್ಟ್ರಕ್ಚರ್ಸ್ (ಮಾಂಡೆಲ್‌ಬ್ರೋಟ್‌ರಿಂದ ಪ್ರಸ್ತಾವನೆ); ಮಾಸ್ಸೂನ್, ೧೯೯೬. ISBN ೨-೨೨೫-೮೫೧೩೦-೧, ಮತ್ತು ನ್ಯೂಯಾರ್ಕ್: ಸ್ಪ್ರಿಂಗರ್-ವೆರ್ಲಾಗ್, ೧೯೯೬. ISBN ೦-೬೪೩-೦೬೯೬೯-೦ ಮುದ್ರಿತವಾಗುವುದಿಲ್ಲ. ಪಿಡಿಎಫ್ ಆವೃತ್ತಿಯಲ್ಲಿ ಲಭ್ಯವಿದೆ [೧].

ಬಾಹ್ಯ ಕೊಂಡಿಗಳು[ಬದಲಾಯಿಸಿ]