ಫರ್ಮನ ಅಂತಿಮ ಪ್ರಮೇಯ
ಫರ್ಮನ ಅಂತಿಮ ಪ್ರಮೇಯ ಎಂಬುದು x, y, z, n ಸ್ವಾಭಾವಿಕ ಸಂಖ್ಯೆಗಳಾಗಿದ್ದು n ≥ 3 ಆಗಿರುವಾಗ
xn + yn = zn............…(1)
ಸಮೀಕರಣದ ಅಸಾಧ್ಯತೆಯನ್ನು ಮಂಡಿಸುವ ಪ್ರಮೇಯ (ಫರ್ಮಾಸ್ ಲಾಸ್ಟ್ ಥಿಯರಮ್). ಫರ್ಮ (1601-65) ಎಂಬ ಫ್ರೆಂಚ್ ಗಣಿತವಿದ ತನ್ನಲ್ಲಿದ್ದ ಡಯೊಫಾಂಟಸ್ ಕೃತಿಗಳ ಬಾಚೆಟ್ ಆವೃತ್ತಿಯ ಪ್ರತಿಯಲ್ಲಿ ಅಂಚು ಟಿಪ್ಪಣಿಯಾಗಿ ಈ ಪ್ರಮೇಯವನ್ನು ಉಲ್ಲೇಖಿಸಿದ್ದ (1637).[೧][೨][೩] ಇದರಲ್ಲಿ ಆತ ಈ ಪ್ರಮೇಯಕ್ಕೆ ಸಾಧನೆ ತನ್ನಲ್ಲಿದೆ ಎಂದು ಖಚಿತವಾಗಿ ಒತ್ತಿ ಹೇಳಿದ್ದಾನೆ. ಆದರೆ ಈ ವಿಷಯದ ಉತ್ತರಚರಿತ್ರೆ ಫರ್ಮ ಪ್ರಾಯಶಃ ತನ್ನ ಸಾಧನೆಯ ಬಗ್ಗೆ ತಪ್ಪು ತಿಳಿದುಕೊಂಡಿರಬೇಕು ಎಂದು ಭಾವಿಸಲು ಅವಕಾಶ ನೀಡಿದೆ. ಇದು ಹಾಗಿರಲಿ. ಈಗ x, y, z ಸ್ವಾಭಾವಿಕ ಸಂಖ್ಯೆಗಳಾಗಿರುವಾಗ
x4 + y4 = z4.............…(2)
ಸಮೀಕರಣ ಅಸಾಧ್ಯ ಎಂಬುದನ್ನು ಫರ್ಮ ನಿಜಕ್ಕೂ ಸಾಧಿಸಿದ್ದ. ಈ ಫಲಿತಾಂಶ ಸಾಧು ಆಗಿರುವುದರಿಂದ x, y, z ಸ್ವಾಭಾವಿಕ ಸಂಖ್ಯೆಗಳಾಗಿದ್ದು p ಬೆಸ ಅವಿಭಾಜ್ಯ (odd prime) ಆಗಿರುವಾಗ
xp + yp = zp...........…(3)
ಸಮೀಕರಣದ ಅಸಾಧ್ಯತೆಯನ್ನು ರುಜುವಾತಿಸಿದರೆ ಸಾಕು.[೪] ಈ ದಿಶೆಯಲ್ಲಿ ಅತಿ ಮುಖ್ಯವಾದ ಮತ್ತು ದಿಟ್ಟತನದಿಂದ ಕೂಡಿದ ಆವಿಷ್ಕಾರ ಎಂದರೆ ಇ. ಇ. ಕುಮ್ಮರ್ (1810-90) ಎಂಬಾತನ ಕೃತಿ. ಆತ ಪಡೆದ ಫಲಿತಾಂಶಗಳು ಏನು ಎನ್ನುವುದನ್ನು ತಿಳಿಯಲು ಡಯೊಫೇಂಟೈನ್ ಸಮೀಕರಣವನ್ನು ತಿಳಿಯಬೇಕು. ಕುಮ್ಮರನ ಕೃತಿಯ ಅನಂತರ ಈಚಿನ ದಿನಗಳಲ್ಲಿ ಎಚ್.ಎಸ್. ವ್ಯಾಂಡಿವರ್ ಎಂಬವರು ಅದನ್ನು ಅನುಸರಿಸಿ ಅದೇ ದಿಶೆಯಲ್ಲಿ ನಡೆದು ಎಲ್ಲ p < 2522 ಕ್ಕೂ ಸಮೀಕರಣದ ಅಸಾಧ್ಯತೆಯನ್ನು ದೃಢೀಕರಿಸಿದರು.[೫] ವ್ಯಾಂಡಿವರ್ ಅವರಿಂದ ಮುಂದೆ ಬಂದ ಕಾರ್ಯಕರ್ತರು p ಯ ಈ ಪರಿಮಿತಿಯನ್ನು ಸ್ವಲ್ಪಮಟ್ಟಿಗೆ ವಿಸ್ತರಿಸಿದ್ದಾರೆ. ಹಾಗಿದ್ದರೂ ಅನಂತಸಂಖ್ಯೆಯ (infinite number) ಅವಿಭಾಜ್ಯ p ಗಳ ಮಟ್ಟಿಗೆ ಕೂಡ ಅಸಾಧ್ಯತೆಯ ಸಾಧನೆ ಅತಿ ಕಷ್ಟವೆಂದು ತೋರುವುದು. ಫರ್ಮನ ಅಂತಿಮ ಪ್ರಮೇಯದ ಅಧುನಾತಮ ಸ್ಥಿತಿಯನ್ನು ಕುರಿತು ವ್ಯಾಂಡಿವರ್ ಅಮೆರಿಕನ್ ಮ್ಯಾಥೆಮ್ಯಾಟಿಕಲ್ ಮಂತ್ಲಿ 53 (1946) 555-78ರಲ್ಲಿ ಪ್ರಕಟವಾಗಿರುವ 'ರಿಪೋರ್ಟ್ ಆಫ್ ದ ಕಮಿಟಿ ಆನ್ ಆಲ್ಜಿಬ್ರೇಕ್ ನಂಬರ್ಸ್' ಎಂಬ ಲೇಖನದಲ್ಲಿ ತುಂಬ ಚೆನ್ನಾಗಿ ವಿವರಿಸಿದ್ದಾರೆ.
ಬೀಜಗಣಿತೀಯ ಸಂಖ್ಯೆಗಳ ಲಘುಗಣಕಗಳಲ್ಲಿ ರೇಖೀಯ ರೂಪಗಳನ್ನು ಕುರಿತು ಎ. ಬೇಕರ್ ಮಾಡಿದ ಆವಿಷ್ಕಾರದಿಂದಾಗಿ ದಾಳಿಯ ಹೊಸ ವಿಧಾನಗಳು (ಇವುಗಳಿಂದ ಕುಮ್ಮರ್ನದರಷ್ಟು ತೃಪ್ತಿಕರ ಫಲಿತಾಂಶಗಳು ಈ ತನಕ ಲಭ್ಯವಾಗದಿದ್ದರೂ) ಸಾಧ್ಯವಾಗಿವೆ. ಇಂಥ ಫಲಿತಾಂಶಗಳಿಗೆ ಒಳ್ಳೆಯ ಎರಡು ಉದಾಹರಣೆಗಳು ಸಿ. ಎಲ್. ಸ್ಟೆವಾರ್ಟ್ ಅವರು ಪಡೆದಂಥವು [ಎ. ನೋಟ್ ಆನ್ ಫರ್ಮ ಇಕ್ವೇಶನ್, ಮ್ಯಾಥೆಮ್ಯಾಟಿಕ್ 24(1977), 130-132.] ಅವನ್ನು ಇಲ್ಲಿ ಉಲ್ಲೇಖಿಸಿದೆ.
ಸಮೀಕರಣ (1)ಕ್ಕೆ x<y, n≥3 ಆಗಿರುವಂತೆ x, y, z, n ಸ್ವಾಭಾವಿಕ ಸಂಖ್ಯೆಗಳಲ್ಲಿ ಪರಿಹಾರಗಳು ಇವೆ ಎಂದೂ, x, y, z ಗಳನ್ನು ಭಾಗಿಸಬಲ್ಲ ಒಂದೇ ಒಂದು ಸ್ವಾಭಾವಿಕ ಸಂಖ್ಯೆ 1 ಎಂದೂ ಅಂಗೀಕರಿಸೋಣ. ಆಗ ಈ ಮುಂದಿನ ಫಲಿತಾಂಶಗಳಿವೆ:
- ಪ್ರಮೇಯ 1: ಗಣ A ಯಾವುದೇ ಧನಾತ್ಮಕ ನಿಯತಾಂಕ (positive constant) ಆಗಿರಲಿ. ಆಗ A ಯ ಮೇಲೆ ಮಾತ್ರ ಅವಲಂಬಿಸಿರುವ ಮತ್ತು ಆಗಿದ್ದರೆ ಆಗ n < B ಆದ ವಿನಾ ಪರಿಹಾರ ಅಸಾಧ್ಯ ಎಂಬ ಗುಣವಿರುವ ಇನ್ನೊಂದು ಧನಾತ್ಮಕ ಸ್ಥಿರಾಂಕ B ಯನ್ನು ಸ್ಪಷ್ಟವಾಗಿ ಗಣಿಸುವುದು ಸಾಧ್ಯ.
- ಪ್ರಮೇಯ 2: C ಯಾವುದೇ ಧನಾತ್ಮಕ ನಿಯತಾಂಕ ಆಗಿರಲಿ. ಆಗ C ಯನ್ನು ಮಾತ್ರ ಅವಲಂಬಿಸಿರುವ ಮತ್ತು y-x < C ಆಗಿದ್ದರೆ ಆಗ n < D ಆದ ವಿನಾ ಪರಿಹಾರ ಅಸಾಧ್ಯ ಎಂಬ ಗುಣವಿರುವ ಇನ್ನೊಂದು ಧನಾತ್ಮಕ ನಿಯತಾಂಕ D ಯನ್ನು ಸ್ಪಷ್ಟವಾಗಿ ಗಣಿಸುವುದು ಸಾಧ್ಯ.
ಪ್ರಮೇಯಕ್ಕೆ ಪರಿಹಾರ
[ಬದಲಾಯಿಸಿ]ಆ್ಯಂಡ್ರೂ ವೈಲ್ಸ್ (1953) ಎಳೆ ಅಣುಗನಾಗಿದ್ದಾಗ ಫರ್ಮಾ ಅಂತಿಮ ಪ್ರಮೇಯದಿಂದ ಆಕರ್ಷಿತರಾದರು. ಗಣಿತಾಧ್ಯಯನ ಚಿಂತನ ಮಂಥನವೇ ತಮ್ಮ ಜೀವನದ ಏಕೈಕ ಲಕ್ಷ್ಯವೆಂದು ನಿರ್ಧರಿಸಿದರು. ಫರ್ಮಾ ಅವರನ್ನು ವಶೀಕರಿಸಿಕೊಂಡಿದ್ದ, ಫರ್ಮಾನಿಂದ ಅವರು ಸಂಪೀಡಿತರಾಗಿದ್ದರು.
ದಿನಾAಕ 26-6-1993 ರಂದು ರಾಷ್ಟ್ರೀಯ ದೈನಿಕಗಳಲ್ಲಿ ವಿಶ್ವಾಸಾರ್ಹ ಸಮಾಚಾರ ಪ್ರಕಟವಾಯಿತು. "ಕೊನೆಗೂ ಈ `ಅಗೋಚರ' ಆದರೆ ಖಚಿತ ಅಸ್ತಿತ್ವ ಇದೆಯೆಂದು ನಂಬಲಾಗಿದ್ದ `ಸಾಧನೆ' ಸಿದ್ಧಿಸಿದೆ ಎಂದು ಪ್ರಕಟವಾಯಿತು. ಅರ್ಥಾತ್ ಫರ್ಮಾ ಅಂತಿಮ ಪ್ರಮೇಯವನ್ನು ಪರಿಹರಿಸಲಾಗಿದೆ ಎಂದು ಪ್ರಕಟವಾಯಿತು. ಅಮೆರಿಕದ ಪ್ರಿನ್ಸ್ಟನ್ ವಿಶ್ವವಿದ್ಯಾಲಯದಲ್ಲಿರುವ ಆ್ಯಂಡ್ರೂ ವೈಲ್ಸ್ ಈ `ಸಾಧನೆ' ಗಳಿಸಿರುವ ಪರಮ ಸಾಧಕ" ಎಂದು ಪ್ರಕಟವಾಯಿತು.
ಮುಂದೆ ವೈಲ್ಸ್ 27-6-1997 ರಂದು ಪಾಲ್ ವೂಲ್ಫ್ಸ್ಕೇಹ್ಲ್ ಪ್ಯಾರಿಸ್ ಅಕಾಡೆಮಿ ಇದಕ್ಕಾಗಿ 1816ರಲ್ಲಿ ಘೋಷಿಸಿದ್ದ ಬಹುಮಾನ ಧನವನ್ನು (1997ರ ಹೊತ್ತಿಗೆ 50,000 ಡಾಲರ್) ಸ್ವೀಕರಿಸಿದರು.[೬][೭][೮][೯] ಆದ್ದರಿಂದ xn + yn = zn ಸಮೀಕರಣಕ್ಕೆ n ನ ಬೆಲೆ 2 ಅಥವಾ ಅಧಿಕ ಧನ ಪೂರ್ಣಾಂಕವಾದಾಗ (positive integer) ಪೂರ್ಣಾಂಕ ಪರಿಹಾರಗಳಿಲ್ಲ ಎಂಬ ಉಕ್ತಿಗೆ ಉತ್ತರ ದೊರಕಿತು.
ಉಲ್ಲೇಖಗಳು
[ಬದಲಾಯಿಸಿ]- ↑ Dickson 1919, p. 731
- ↑ Singh, pp. 60–62
- ↑ Aczel 1996, p. 9
- ↑ Ribenboim, pp. 1–2
- ↑ Ribenboim P (1979). 13 Lectures on Fermat's Last Theorem. New York: Springer Verlag. p. 202. ISBN 978-0-387-90432-0.
- ↑ Castelvecchi, Davide (15 March 2016). "Fermat's last theorem earns Andrew Wiles the Abel Prize". Nature. 531 (7594): 287. Bibcode:2016Natur.531..287C. doi:10.1038/nature.2016.19552. PMID 26983518. S2CID 4383161.
- ↑ British mathematician Sir Andrew Wiles gets Abel math prize – The Washington Post.
- ↑ 300-year-old math question solved, professor wins $700k – CNN.com.
- ↑ Singh, p. 284
ಗ್ರಂಥಸೂಚಿ
[ಬದಲಾಯಿಸಿ]- Ribenboim, P (2000). Fermat's Last Theorem for Amateurs. New York: Springer-Verlag. ISBN 978-0-387-98508-4.
- Singh, S (1998). Fermat's Enigma. New York: Anchor Books. ISBN 978-0-385-49362-8.
- Stark, H (1978). An Introduction to Number Theory. MIT Press. ISBN 0-262-69060-8.