ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆ

ವಿಕಿಪೀಡಿಯ ಇಂದ
ಇಲ್ಲಿಗೆ ಹೋಗು: ಸಂಚರಣೆ, ಹುಡುಕು

ಟೆಂಪ್ಲೇಟು:Double image stack

ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆ ಯೆಂದರೆ 20ನೇ ಶತಮಾನದ ಮಧ್ಯಭಾಗದಲ್ಲಿ ಭೂಮಿಯ ಮೇಲ್ಮೈ-ಸಮೀಪದಲ್ಲಿರುವ ವಾಯು ಮತ್ತು ಸಾಗರ ಪ್ರದೇಶಗಳಲ್ಲಿ ಆದ ಸರಾಸರಿ ತಾಪಮಾನದ ಏರಿಕೆ ಹಾಗೂ ಅದರ ಪ್ರಕ್ಷೇಪಿತ ಮುಂದುವರಿಕೆ. ಜಾಗತಿಕ ಮೇಲ್ಮೈ ಉಷ್ಣತೆಯು ಕಳೆದ ಶತಮಾನ[೧][A]ದಲ್ಲಿ 0.74 ± 0.18 °C (1.33 ± 0.32 °F)ರಷ್ಟು ಹೆಚ್ಚಿದೆ. ಹವಾಮಾನ ಬದಲಾವಣೆಯ ಕುರಿತಾದ ಅಂತರ-ಸರಕಾರಿ ಮಂಡಳಿಯು (IPCC) ಅಗೆದು ತೆಗೆದ ಇಂಧನಗಳು ಮತ್ತು ಅರಣ್ಯನಾಶಗಳಂತಹಾ ಮಾನವ ಚಟುವಟಿಕೆಗಳಿಂದಾದ ಹಸಿರುಮನೆ ಅನಿಲಗಳ ಸಂಗ್ರಹದ ಹೆಚ್ಚಳವು 20ನೇ ಶತಮಾನ[೧] ದ ಮಧ್ಯಕಾಲದ ನಂತರದ ತಾಪಮಾನ ಏರಿಕೆಗೆ ಕಾರಣವೆಂದು ತೀರ್ಮಾನಕ್ಕೆ ಬಂದಿದೆ. ಸೌರ ವಿಕಿರಣಗಳ ಪ್ರಸರಣ ಮತ್ತು ಅಗ್ನಿಪರ್ವತಗಳಂತಹಾ ನೈಸರ್ಗಿಕ ವೈಪರೀತ್ಯಗಳು ಕೈಗಾರಿಕಾ ಯುಗಕ್ಕೂ ಹಿಂದಿನ ಕಾಲದಿಂದ 1950ರವರೆಗಿನ ತಾಪಮಾನ ಹೆಚ್ಚಳಕ್ಕೆ ಕಾರಣವಾಗಿದ್ದುದಲ್ಲದೇ, ನಂತರ ಅಲ್ಪ ಪ್ರಮಾಣದಲ್ಲಿ ತಂಪಾಗಲೂ[೨][೩] ನೆರವಾಯಿತು ಎಂದೂ IPCC ವಿಶ್ಲೇಷಿಸಿದೆ. ಈ ಪ್ರಾಥಮಿಕ ತೀರ್ಮಾನಗಳನ್ನು ಎಲ್ಲಾ ಪ್ರಮುಖ ಕೈಗಾರಿಕಾ ರಾಷ್ಟ್ರಗಳ[೪] ರಾಷ್ಟ್ರೀಯ ವಿಜ್ಞಾನ ಅಕಾಡೆಮಿಗಳೂ ಸೇರಿದಂತೆ [[ವಾತಾವರಣ ಬದಲಾವಣೆಯ ಬಗ್ಗೆ ವೈಜ್ಞಾನಿಕ ಅಭಿಪ್ರಾಯ|40ಕ್ಕೂ ಹೆಚ್ಚು ವೈಜ್ಞಾನಿಕ ಸಮುದಾಯಗಳು ಮತ್ತು ವೈಜ್ಞಾನಿಕ ಅಕಾಡೆಮಿಗಳು[B] ಅನುಮೋದಿಸಿವೆ]]. ಅಲ್ಪ ಸಂಖ್ಯೆಯ ಕೆಲ ವಿಜ್ಞಾನಿಗಳು ಈ ಬಹುಮತ ಅಭಿಪ್ರಾಯದ ಬಗ್ಗೆ ಭಿನ್ನಮತ ಹೊಂದಿದ್ದಾರೆ.

ಇತ್ತೀಚಿನ IPCC ವರದಿಯಲ್ಲಿನ ಹವಾಮಾನದ ಮಾದರಿ ಪ್ರಕ್ಷೇಪಗಳ ಪ್ರಕಾರ ಜಾಗತಿಕ ಮೇಲ್ಮೈ ಉಷ್ಣತೆಯು ಬಹುಶಃ ಇನ್ನೂ 1.1 to 6.4 °C (2.0 to 11.5 °F)ರಷ್ಟು ಇಪ್ಪತ್ತೊಂದನೇ ಶತಮಾನ[೧] ದಲ್ಲಿ ಹೆಚ್ಚಳವಾಗಲಿದೆ. ಆದರೆ ಈ ಅಂದಾಜಿನಲ್ಲಿನ ಅನಿಶ್ಚಿತತೆಯು ವಿಶ್ಲೇಷಣೆಗೆ ಬಳಸಿದ ವಿವಿಧ ಮಾದರಿಗಳಲ್ಲಿನ ಹಸಿರುಮನೆ ಅನಿಲಗಳ ಸಂಗ್ರಹದ ಬಗೆಗಿನ ಸಂವೇದನೆಗಳಲ್ಲಿನ ವ್ಯತ್ಯಾಸಗಳು ಮತ್ತು ಭವಿಷ್ಯದ ಹಸಿರುಮನೆ ಅನಿಲಗಳ ಉತ್ಪಾದನೆಯ ಪ್ರಮಾಣದ ಅಂದಾಜುಗಳಲ್ಲಿನ ವ್ಯತ್ಯಾಸದಿಂದುಂಟಾಗಿದೆ. ಇನ್ನಿತರ ಅನಿಶ್ಚಿತತೆಗಳೆಂದರೆ ವಿಶ್ವದಾದ್ಯಂತ ತಾಪಮಾನ ಹೆಚ್ಚಳ ಹಾಗೂ ಸಂಬಂಧಿತ ಬದಲಾವಣೆಗಳು ಪ್ರದೇಶದಿಂದ ಪ್ರದೇಶಕ್ಕೆ ಎಷ್ಟರಮಟ್ಟಿಗೆ ವ್ಯತ್ಯಾಸವಾಗಬಹುದು ಎಂಬುದು. ಹೆಚ್ಚಿನ ಅಧ್ಯಯನಗಳು 2100ನೇ ಇಸವಿಯವರೆಗಿನ ಅವಧಿಯನ್ನು ಗುರಿಯಾಗಿಸಿಕೊಂಡಿವೆ. ಈ ಹೊರಸೂಸುವಿಕೆಯು ನಿಂತರೂ ಕೂಡಾ 2100ರ ನಂತರವೂ ತಾಪಮಾನ ಹೆಚ್ಚಳವು ಮುಂದುವರೆಯಲಿದ್ದು ಅದಕ್ಕೆ ಮುಖ್ಯ ಕಾರಣ, ಸಾಗರಗಳ ಅಗಾಧ ಉಷ್ಣತೆಯನ್ನು ಕಾಪಿಟ್ಟುಕೊಳ್ಳಬಲ್ಲ ಹಾಗೂ ಇಂಗಾಲದ ಡೈಆಕ್ಸೈಡ್‌ನ ವಾತಾವರಣದಲ್ಲಿ ದೀರ್ಘಕಾಲ ಇರಬಲ್ಲ ಸಾಮರ್ಥ್ಯಗಳು.[೫][೬]

ಜಾಗತಿಕ ತಾಪಮಾನದಲ್ಲಿನ ಏರಿಕೆಯು ಸಮುದ್ರಮಟ್ಟದ ಏರಿಕೆಗೆ ಕಾರಣವಾಗಲಿದ್ದು, ಅವಕ್ಷೇಪನದ ಪ್ರಮಾಣ ಮತ್ತು ಮಾದರಿಗಳಲ್ಲಿ ವ್ಯತ್ಯಾಸವನ್ನುಂಟು ಮಾಡಲಿದ್ದು, ಉಪೋಷ್ಣವಲಯದ ಮರಳುಗಾಡುಗಳ ಸಂಭಾವ್ಯ ವಿಸ್ತರಣೆಗೆ ಕಾರಣವಾಗಲಿದೆ.[೭] ಆರ್ಕ್‌ಟಿಕ್‌ ವಲಯದಲ್ಲಿ ಉಷ್ಣಾಂಶದ ಅತೀವ ಹೆಚ್ಚಳದೊಂದಿಗೆ ಶೀತ ಕೆಳ ಭೂಸ್ತರ, ಸಮುದ್ರ ನೀರ್ಗಲ್ಲುಗಳು ಹಾಗೂ ಹಿಮನದಿಗಳ ಹಿಂಜರಿತದ ಮುಂದುವರಿಕೆಯನ್ನು ನಿರೀಕ್ಷಿಸಲಾಗಿದೆ. ಇನ್ನಿತರ ಸಂಭಾವ್ಯ ವೈಪರೀತ್ಯಗಳೆಂದರೆ ಹವಾಮಾನದ ವೈಪರೀತ್ಯಗಳ ತೀಕ್ಷ್ಣತೆಯ ಹೆಚ್ಚಳ, ಪ್ರಾಣಿ ಸಂಕುಲಗಳ ಅಳಿವು ಮತ್ತು ಕೃಷಿ ಉತ್ಪಾದನೆಗಳಲ್ಲಿನ ಬದಲಾವಣೆಗಳು.

ವಾತಾವರಣ ಬದಲಾವಣೆಯ ಬಗೆಗೆ ಹಾಗೂ ಅದಕ್ಕೆ ಪ್ರತಿಕ್ರಿಯೆಯಾಗಿ ಕೈಗೊಳ್ಳಬೇಕಾದ (ಯಾವುದಾದರೂ ಇದ್ದರೆ) ಕಾರ್ಯಗಳ ಬಗ್ಗೆ ರಾಜಕೀಯ ಮತ್ತು ಸಾರ್ವಜನಿಕ ಚರ್ಚೆಗಳು ನಡೆಯುತ್ತಲಿವೆ. ಲಭ್ಯವಿರುವ ಸಾಧ್ಯತೆಗಳೆಂದರೆ ತಾಪ ನಿವಾರಣೆ ಮಾಡಲು ಭವಿಷ್ಯದ ಹೊರಸೂಸುವಿಕೆಯ ನಿಯಂತ್ರಣ, ಉಷ್ಣತೆ ಹೆಚ್ಚಳದಿಂದಾದ ಹಾನಿಯನ್ನು ಕಡಿಮೆಗೊಳಿಸಲು ಹೊಂದಾಣಿಕೆಗಳನ್ನು ಮಾಡಿಕೊಳ್ಳುವುದು ಹಾಗೂ ಜಾಗತಿಕ ಉಷ್ಣತೆಯ ಹೆಚ್ಚಳವನ್ನು ನಿರರ್ಥಕಗೊಳಿಸಲು ಊಹಾತ್ಮಕವಾಗಿ ಭೂ-ವಾಸ್ತುಶಿಲ್ಪ ಬಳಕೆ. ಬಹಳಷ್ಟು ರಾಷ್ಟ್ರೀಯ ಸರಕಾರಗಳು ಹಸಿರುಮನೆ ಅನಿಲ ಹೊರಸೂಸುವಿಕೆಯನ್ನು ತಗ್ಗಿಸುವ ಗುರಿ ಹೊಂದಿರುವ ಕ್ಯೋಟೋ ನಿಯಮಾವಳಿಗಳಿಗೆ ಸಹಿ ಮಾಡಿ ತಮ್ಮ ಅನುಮೋದನೆಯನ್ನು ವ್ಯಕ್ತಪಡಿಸಿವೆ.

ಉಷ್ಣತೆಯ ಬದಲಾವಣೆಗಳು[ಬದಲಾಯಿಸಿ]

ದಶಕಗಳ ಪ್ರಮಾಣದಲ್ಲಿ ಪರಿಷ್ಕರಿಸಿದ ವಿವಿಧ ಅಂದಾಜುಗಳ ಮೂಲಕ ಎರಡು ಸಹಸ್ರಮಾನಗಳ ಸರಾಸರಿ ಮೇಲ್ಮೈ ತಾಪಮಾನ ವಿವರಗಳು.ಪರಿಷ್ಕರಿಸದ 2004ರ ಸಾಲಿನ ವಾರ್ಷಿಕ ವಿವರವನ್ನು ಸಹಾ ಗುರುತಿಸಲಾಗಿದೆ.

ಭೂಮಿಯ ಮೇಲ್ಮೈ ಸಮೀಪದಲ್ಲಿನ ಜಾಗತಿಕ ಉಷ್ಣತೆಯ ಸರಾಸರಿಯಲ್ಲಿನ ಪ್ರವೃತ್ತಿಯನ್ನು ಸಾಧಾರಣವಾಗಿ ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆಯ ಮಾಪನವನ್ನಾಗಿ ಬಳಸಲಾಗುತ್ತದೆ. ರೇಖೀಯ ಪ್ರವೃತ್ತಿಯ ವ್ಯಕ್ತಪಡಿಸುವಿಕೆಯಲ್ಲಿ 1906-2005ರ ಅವಧಿಯಲ್ಲಿ ಈ ತಾಪಮಾನವು 0.74 °C ±0.18 °Cರಷ್ಟು ಹೆಚ್ಚಳವನ್ನು ಕಂಡಿದೆ. ಆ ಕಾಲಾವಧಿಯ ಕಡೆಯ 50 ವರ್ಷಗಳಲ್ಲಿನ ತಾಪಮಾನ ಹೆಚ್ಚಳದ ಪ್ರಮಾಣವು ಬಹುಪಾಲು ಇಡೀ ಕಾಲಾವಧಿಯಲ್ಲಾದ ಹೆಚ್ಚಳದ ಎರಡರಷ್ಟಾಗುತ್ತದೆ (ಕಡೆಯ ಪ್ರತಿ ದಶಕದ ಹೆಚ್ಚಳ 0.13 °C ±0.03 °C ಆಗಿದ್ದರೆ, ಇಡೀ ಕಾಲಾವಧಿಯ ಹೆಚ್ಚಳ ಪ್ರತಿ ದಶಕದ ಹೆಚ್ಚಳ 0.07 °C ± 0.02 °Cರಷ್ಟಿತ್ತು). 1900[೮] ರಿಂದ ಪ್ರತಿ ದಶಕಕ್ಕೆ 0.002 °Cರಷ್ಟು ಹೆಚ್ಚಳವು ನಗರ ಪ್ರದೇಶಗಳ ಉಷ್ಣ ದ್ವೀಪ ಪರಿಣಾಮದಿಂದಾಗಿದೆಯೆಂದು ಅಂದಾಜಿಸಲಾಗಿದೆ. ಉಪಗ್ರಹ ಉಷ್ಣತಾ ಮಾಪನಗಳ ಪ್ರಕಾರ 1979ರಿಂದ ಕೆಳಮಟ್ಟದ ಹವಾಗೋಳದಲ್ಲಿನ ತಾಪಮಾನವು 0.12ರಿಂದ 0.22 °Cವರೆಗೆ (0.22ರಿಂದ 0.4 °Fವರೆಗೆ) ಹೆಚ್ಚಳ ಕಂಡಿದೆ. 1850ರ ಮುಂಚೆ ಸಾವಿರ ಇಲ್ಲವೇ ಎರಡು ಸಾವಿರ ವರ್ಷಗಳ ಕಾಲ ತಾಪಮಾನವು ಮಧ್ಯಯುಗದ ಉಷ್ಣ ಕಾಲಾವಧಿ ಇಲ್ಲವೇ ಕಿರು ಹಿಮಯುಗದ ಹಾಗೆ ಪ್ರದೇಶವಾರು ವ್ಯತ್ಯಾಸದೊಂದಿಗೆ ಸಾಪೇಕ್ಷ ಸ್ಥಿರತೆಯನ್ನು ಕಂಡುಕೊಂಡಿತ್ತು.

1800ರ ಶತಮಾನದ ಉತ್ತರಾರ್ಧದಲ್ಲಿ, ವಿಶ್ವಾಸಾರ್ಹ ಉಪಕರಣಗಳ ಮೂಲಕ ಪತ್ತೆಹಚ್ಚಲು ಸಾಧ್ಯವಾದ ಕಾರಣ, NASAಗೊಡ್ಡಾರ್ಡ್‌ ಇನ್‌ಸ್ಟಿಟ್ಯೂಟ್‌ ಫಾರ್ ಸ್ಪೇಸ್‌ ಸ್ಟಡೀಸ್‌ನ ಅಂದಾಜಿನ ಪ್ರಕಾರ 1998ರ ದಾಖಲೆಯ ತಾಪಮಾನವನ್ನು ಡಿಗ್ರಿ[೯] ಯ ಕೆಲ ಶತಾಂಶಗಳಷ್ಟು ಹಿಂದಿಕ್ಕಿ 2005ನೇ ವರ್ಷ ಇದುವರೆಗಿನ ಅತಿ ಹೆಚ್ಚು ಉಷ್ಣತೆಯ ವರ್ಷವಾಗಿದೆ. ವಿಶ್ವ ಪವನಶಾಸ್ತ್ರ ಸಂಸ್ಥೆ ಹಾಗೂ ಹವಾಗುಣ ಸಂಶೋಧನಾ ವಿಭಾಗಗಳು ಸಿದ್ಧಪಡಿಸಿದ ಅಂದಾಜಿನ ಪ್ರಕಾರ 1998[೧೦][೧೧] ರ ನಂತರ 2005 ಅತೀವ ತಾಪಮಾನ ಹೊಂದಿದ ವರ್ಷವೆನ್ನಲಾಗಿದೆ. 1998ರ[೧೨] ಲ್ಲಿ ಆ ಶತಮಾನದಲ್ಲೇ ಶಕ್ತಿಶಾಲಿಯಾದದ್ದು ಎನ್ನಲಾದ ಎಲ್‌ ನಿನೊದ ಹಾವಳಿಯಿಂದಾಗಿ ತಾಪಮಾನವು ಅಸಹಜ ಪ್ರಮಾಣವನ್ನು ಮುಟ್ಟಿತ್ತು.

ಭೂಗೋಳದಾದ್ಯಂತ ತಾಪಮಾನ ವ್ಯತ್ಯಾಸವಾಗುತ್ತಿರುತ್ತದೆ. 1979ರಿಂದೀಚೆಗೆ ಭೂಪ್ರದೇಶದ ತಾಪಮಾನವು ಸಾಗರಪ್ರದೇಶದ ತಾಪಮಾನಕ್ಕಿಂತ ಎರಡು ಪಟ್ಟು ವೇಗವಾಗಿ ಹೆಚ್ಚಳಗೊಳ್ಳುತ್ತಲಿದೆ (ಪ್ರತಿ ದಶಕಕ್ಕೆ 0.25 °C ಹೆಚ್ಚಳದ ವಿರುದ್ಧ ಪ್ರತಿ ದಶಕಕ್ಕೆ 0.13 °C ಹೆಚ್ಚಳ).[೧೩] ಸಾಗರ ಪ್ರದೇಶದ ಉಷ್ಣತೆಯು ಹೆಚ್ಚು ನಿಧಾನವಾಗಿ ಏರಿಕೆಯಾಗುವುದೇಕೆಂದರೆ ಸಾಗರಗಳ ಹೆಚ್ಚಿನ ಶಾಖ ಹಿಡಿದಿಟ್ಟುಕೊಳ್ಳುವ ಸಾಮರ್ಥ್ಯ ಮತ್ತು ಸಾಗರಗಳು ಬಾಷ್ಪೀಕರಣ[೧೪] ದ ಮೂಲಕ ತಮ್ಮ ತಾಪಮಾನವನ್ನು ಕಳೆದುಕೊಳ್ಳುವುದು. ಉತ್ತರ ಗೋಳಾರ್ಧವು ದಕ್ಷಿಣ ಗೋಳಾರ್ಧಕ್ಕಿಂತ ವೇಗವಾಗಿ ಬಿಸಿಯಾಗುವುದೇಕೆಂದರೆ ಅಲ್ಲಿನ ಹೆಚ್ಚಿನ ಭೂಪ್ರದೇಶ ಹಾಗೂ ಬಹು ಪ್ರಮಾಣದಲ್ಲಿ ಕಾಲೋಚಿತ ಹಿಮ ಹೊದಿಕೆಗಳು ಮತ್ತು ಹಿಮ‌-ಪ್ರತಿಫಲನಾಂಕ ಪ್ರತಿಕ್ರಿಯೆಗಳ ಮೇಲೆ ಅವಲಂಬಿತವಾಗಿ ಸಾಗರ ನೀರ್ಗಲ್ಲುಗಳಿವೆ. ಉತ್ತರ ಗೋಳಾರ್ಧದಲ್ಲಿಯೇ ಹೆಚ್ಚಿನ ಹಸಿರುಮನೆ ಹೊರಸೂಸುವಿಕೆಯಿದ್ದರೂ ಅದು ಗೋಳಾರ್ಧಗಳ ನಡುವಿನ ತಾಪಮಾನ ವ್ಯತ್ಯಾಸಕ್ಕೆ ಕಾರಣವಲ್ಲ. ಇದೇಕೆಂದರೆ ಪ್ರಮುಖ ಹಸಿರುಮನೆ ಅನಿಲಗಳು ಎರಡೂ ಗೋಳಾರ್ಧ[೧೫] ಗಳಲ್ಲಿ ಹರಡಲು ಬೇಕಾಗುವಷ್ಟರ ಮಟ್ಟಿಗೆ ಸ್ಥಾಯಿತ್ವ ಹೊಂದಿರುತ್ತವೆ.

ಸಾಗರಗಳ ಉಷ್ಣತಾ ಜಡತ್ವ ಹಾಗೂ ಇನ್ನಿತರ ಪರಿಣಾಮಗಳಿಗೆ ಸಾವಕಾಶದ ಪ್ರತಿಕ್ರಿಯೆಯ ಕಾರಣದಿಂದಾಗಿ ವಾತಾವರಣದ ಬದಲಾವಣೆಗಳಿಗೆ ಹೊಂದಿಕೊಳ್ಳಲು ಶತಮಾನಗಳು ಅಥವಾ ಇನ್ನೂ ದೀರ್ಘ ಕಾಲ ತೆಗೆದುಕೊಳ್ಳಬಹುದು. ವಾತಾವರಣ ಬದ್ಧತೆಯ ಕುರಿತಾದ ಅಧ್ಯಯನಗಳ ಪ್ರಕಾರ 2000ರ ಮಟ್ಟಕ್ಕೆ ಹಸಿರುಮನೆ ಅನಿಲಗಳನ್ನು ನಿಯಂತ್ರಿಸಿದರೂ, ಸುಮಾರು 0.5 °C (0.9 °F)ರಷ್ಟು ಮಟ್ಟಿಗಿನ ಉಷ್ಣಾಂಶ ಹೆಚ್ಚಳ ಮುಂದುವರೆಯುತ್ತದೆ.[೧೬]

ವಿಕಿರಣಾತ್ಮಕ ಒತ್ತಡ[ಬದಲಾಯಿಸಿ]

ವಾತಾವರಣ ವಿಜ್ಞಾನದಲ್ಲಿ ಬಾಹ್ಯ ಒತ್ತಡವೆಂಬ ಪದವನ್ನು ವಾತಾವರಣ ವ್ಯವಸ್ಥೆಯ ಹೊರಗಿನ (ಭೂಮಿಯ ಹೊರಗಿನದಲ್ಲವಾದರೂ) ಪ್ರಕ್ರಿಯೆಗಳಿಗೆ ಸಂಬಂಧಿಸಿದಂತೆ ಬಳಸಲಾಗುತ್ತದೆ. ಹಸಿರುಮನೆ ಅನಿಲಗಳ ಸಂಗ್ರಹ, ಸೌರ ಪ್ರಕಾಶಮಾನತೆಯಲ್ಲಿನ ವ್ಯತ್ಯಾಸ, ಅಗ್ನಿಪರ್ವತಗಳ ಹೊರಕಾರುವಿಕೆ ಮತ್ತು ಸೂರ್ಯ[೨] ನನ್ನು ಸುತ್ತುವಲ್ಲಿನ ಭೂಮಿಯ ಕಕ್ಷೆಯಲ್ಲಿನ ಬದಲಾವಣೆಗಳು ಸೇರಿದಂತೆ ಅನೇಕ ರೀತಿಯ ಬಾಹ್ಯ ಕ್ರಿಯೆಗಳಿಗೆ ವಾತಾವರಣವು ಪ್ರತಿಕ್ರಿಯೆ ನೀಡುತ್ತದೆ. ಇತ್ತೀಚಿನ ವಾತಾವರಣ ಬದಲಾವಣೆಯು ಮೊದಲ ಮೂರು ಒತ್ತಡಗಳಿಂದಾಗುತ್ತಿದೆ. ಕಕ್ಷೆಯ ಆವರ್ತನಗಳು ಹತ್ತು ಸಾವಿರ ವರ್ಷಗಳ ಅವಧಿಯಲ್ಲಿ ಅಲ್ಪ ಬದಲಾವಣೆಗಳನ್ನು ಹೊಂದುವಷ್ಟು ತೀರಾ ನಿಧಾನವಾದ ಪ್ರಕ್ರಿಯೆಯಾಗಿರುವದರಿಂದ ಕಳೆದ ಶತಮಾನದಲ್ಲಿನ ಉಷ್ಣಾಂಶ ಬದಲಾವಣೆಗಳಿಗೆ ಕಾರಣವಾಗಿರುವ ಸಾಧ್ಯತೆ ಇಲ್ಲ.

ಹಸಿರುಮನೆ ಅನಿಲಗಳು[ಬದಲಾಯಿಸಿ]

ಟೆಂಪ್ಲೇಟು:Double image stack

ವಾಯುಮಂಡಲದಲ್ಲಿನ ಅನಿಲಗಳಿಂದಾಗುವ ಅವಗೆಂಪು ವಿಕಿರಣಗಳ ಹೀರುವಿಕೆ ಹಾಗೂ ಹೊರಸೂಸುವಿಕೆಯು ಗ್ರಹವೊಂದರ ಕೆಳಮಟ್ಟದ ವಾಯುಮಂಡಲ ಹಾಗೂ ಮೇಲ್ಮೈಯ ಉಷ್ಣತೆಯನ್ನು ಹೆಚ್ಚಿಸುವ ಪ್ರಕ್ರಿಯೆಯನ್ನು ಹಸಿರುಮನೆ ಪರಿಣಾಮವೆನ್ನುತ್ತಾರೆ. ಈ ವಿಚಾರವನ್ನು 1824ರಲ್ಲಿ ಮೊದಲಿಗೆ ಜೋಸೆಫ್‌ ಫ್ಯೂರಿಯರ್ ಪತ್ತೆಹಚ್ಚಿದರು. ನಂತರ 1896[೧೭] ರಲ್ಲಿ ಸ್ವಾಂಟೆ ಅರ್ರ್‌‌ಹೆನಿಯಸ್‌ರವರು ಇದನ್ನು ಪರಿಮಾಣಾತ್ಮಕವಾಗಿ ಪರಿಶೀಲನೆ ನಡೆಸಿದರು. ಹಸಿರುಮನೆ ಪರಿಣಾಮದ ಅಸ್ತಿತ್ವವನ್ನು ಇತ್ತೀಚಿನ ತಾಪಮಾನ ಹೆಚ್ಚಳಕ್ಕೆ ಮಾನವ ಚಟುವಟಿಕೆ ಕಾರಣವಲ್ಲ ಎಂದು ವಾದಿಸುವವರೂ ಸಹಾ ಅಲ್ಲಗಳೆಯುವುದಿಲ್ಲ. ಆದರೆ ಪ್ರಮುಖ ಪ್ರಶ್ನೆಯೆಂದರೆ ವಾತಾವರಣದಲ್ಲಿನ ಹಸಿರುಮನೆ ಅನಿಲಗಳ ಸಂಗ್ರಹವನ್ನು ಮಾನವ ಚಟುವಟಿಕೆಯು ಹೆಚ್ಚಿಸಿದಾಗ ಹಸಿರುಮನೆ ಪರಿಣಾಮದ ಪ್ರಭಾವ ಹೆಚ್ಚಾಗುವುದು ಹೇಗೆ ಎಂಬುದು.

ನೈಸರ್ಗಿಕವಾಗಿ ಉತ್ಪನ್ನವಾಗುವ ಹಸಿರುಮನೆ ಅನಿಲಗಳು ಸುಮಾರು 33 °C (59 °F)[೧೮][C]ರಷ್ಟು ಮಧ್ಯಮ ಪ್ರಮಾಣದ ಉಷ್ಣಾಂಶ ಹೆಚ್ಚಳಕ್ಕೆ ಕಾರಣವಾಗುತ್ತವೆ. ಪ್ರಮುಖ ಹಸಿರುಮನೆ ಅನಿಲಗಳೆಂದರೆ 36ರಿಂದ 70 ಪ್ರತಿಶತ ಹಸಿರುಮನೆ ಪರಿಣಾಮಕ್ಕೆ ಕಾರಣವಾಗುವ ನೀರಿನ ಆವಿ, 9ರಿಂದ 26 ಪ್ರತಿಶತ ಕಾರಣವಾಗುವ ಇಂಗಾಲದ ಡೈಆಕ್ಸೈಡ್‌(CO2), 4ರಿಂದ 9 ಪ್ರತಿಶತScript error[not in citation given] ಕಾರಣವಾಗುವ ಮೀಥೇನ್‌ (CH4); ಮತ್ತು 3ರಿಂದ 7 ಪ್ರತಿಶತ[೧೯][೨೦] ಕಾರಣವಾಗುವ ಓಝೋನ್(O3). ಮೋಡಗಳು ಸಹಾ‌ ವಿಕಿರಣ ಅಸಮತೋಲನಕ್ಕೆ ಕಾರಣವಾಗುವುದಾದರೂ ಅವು ದ್ರವರೂಪದ ನೀರು ಅಥವಾ ಹಿಮದಿಂದ ರೂಪುಗೊಂಡಿರುವ ಕಾರಣ ಅವನ್ನು ನೀರಿನ ಆವಿ ಹಾಗೂ ಇನ್ನಿತರ ಅನಿಲಗಳಿಂದ ಪ್ರತ್ಯೇಕಿಸಿ ನೋಡಲಾಗುತ್ತದೆ.

ಕೈಗಾರಿಕಾ ಕ್ರಾಂತಿಯ ನಂತರ ಮಾನವ ಚಟುವಟಿಕೆಯು ವಾಯುಮಂಡಲದಲ್ಲಿನ ಹಸಿರುಮನೆ ಅನಿಲಗಳ ಪ್ರಮಾಣವನ್ನು ಹೆಚ್ಚಿಸುತ್ತಾ CO2, ಮೀಥೇನ್‌, ಹವಾಗೋಳದ ಓಝೋನ್‌, CFCಗಳು ಹಾಗೂ ನೈಟ್ರಸ್‌ ಆಕ್ಸೈಡ್‌ಗಳಿಂದಾಗುವ ವಿಕಿರಣಾತ್ಮಕ ಒತ್ತಡವನ್ನು ಹೆಚ್ಚಿಸುತ್ತಿದೆ. 1700ರ ಶತಮಾನ[೨೧] ದ ಮಧ್ಯಭಾಗದಿಂದ CO2 ಮತ್ತು ಮೀಥೇನ್‌ಗಳ ಸಂಗ್ರಹಣೆಯು ಅನುಕ್ರಮವಾಗಿ 36%ರಷ್ಟು ಹಾಗೂ 148%ರಷ್ಟು ಹೆಚ್ಚಿದೆ. ಈ ಪ್ರಮಾಣಗಳು, ಹಿಮಗರ್ಭ[೨೨] ದ ಉತ್ಖನನದಿಂದ ಪಡೆದ ವಿಶ್ವಾಸಾರ್ಹ ಮಾಹಿತಿಯ ಪ್ರಕಾರ ಕಳೆದ 650,000 ವರ್ಷಗಳಲ್ಲಿನ ಯಾವುದೇ ಸಮಯದಲ್ಲಿನ ಪ್ರಮಾಣಕ್ಕಿಂತ ಬಹಳ ಹೆಚ್ಚಿವೆ. ಅಪರೋಕ್ಷ ಭೂವೈಜ್ಞಾನಿಕ ಕುರುಹುಗಳ ಪ್ರಕಾರ ಈ ಪ್ರಮಾಣದ CO2 ಅನಿಲವು 20 ದಶಲಕ್ಷ ವರ್ಷಗಳ ಹಿಂದೆ ಮಾತ್ರವೇ ಇತ್ತು.[೨೩] ಅಗೆದು ತೆಗೆದ ಇಂಧನಗಳ ಉರಿಸುವಿಕೆಯು ಕಳೆದ 20 ವರ್ಷಗಳಲ್ಲಿ ಮಾನವ ಚಟುವಟಿಕೆಯಿಂದಾದ CO2 ಹೆಚ್ಚಳದ ನಾಲ್ಕನೇ ಮೂರು ಭಾಗಕ್ಕೆ ಕಾರಣವಾಗಿದೆ. ಉಳಿದಂತೆ ಬಹುಪಾಲು ಭೂಬಳಕೆಯಲ್ಲಿನ ವ್ಯತ್ಯಾಸ, ನಿರ್ದಿಷ್ಟವಾಗಿ ಅರಣ್ಯನಾಶದಿಂದಾಗಿದೆ.[೨೪]

CO2 ಸಂಗ್ರಹಗಳು ಅಗೆದು ತೆಗೆದ ಇಂಧನಗಳ ಉರಿಸುವಿಕೆಯಿಂದ ಹಾಗೂ ಭೂ-ಬಳಕೆಯಲ್ಲಿನ ಬದಲಾವಣೆಯಿಂದ ಹೆಚ್ಚುತ್ತಲೇ ಇದೆ. ಭವಿಷ್ಯದ ಏರುವಿಕೆಯ ದರವು ಅನಿರ್ದಿಷ್ಟ ಆರ್ಥಿಕ, ಸಮಾಜಶಾಸ್ತ್ರೀಯ, ತಾಂತ್ರಿಕ ಹಾಗೂ ನೈಸರ್ಗಿಕ ಅಭಿವೃದ್ಧಿಗಳ ಮೇಲೆ ಆಧರಿತವಾಗಲಿದೆ. IPCCಯ ಹೊರಸೂಸುವಿಕೆಯ ಸಂದರ್ಭಗಳ ಬಗ್ಗೆ ವಿಶೇಷ ವರದಿಯು 2100[೨೫] ರ ಇಸವಿಯ ಹೊತ್ತಿಗೆ 541ರಿಂದ 970 ppm ವ್ಯಾಪಕವಾಗಿ ಹರಡುವ ಭವಿಷ್ಯದ CO2 ಸಂದರ್ಭಗಳ ಬಗ್ಗೆ ಹೇಳುತ್ತದೆ. ಅಗೆದು ತೆಗೆವ ಇಂಧನದ ನಿಕ್ಷೇಪಗಳು ಈ ಮಟ್ಟವನ್ನು ತಲುಪಲು ಸಾಕಾಗುವುದಲ್ಲದೇ ಕಲ್ಲಿದ್ದಲು, ಟಾರ್‌ ಮರಳು ಅಥವಾ ಮೀಥೇನ್‌ ಜಾಲರಿಗಳನ್ನು ಹೆಚ್ಚಿನ ಪ್ರಮಾಣದಲ್ಲಿ ಬಳಸಿಕೊಂಡರೆ[೨೬] 2100ರ ನಂತರವೂ ಹೊರಸೂಸುವಿಕೆಯು ಮುಂದುವರೆಯಲಿದೆ.

ಕ್ಲೋರೋಫ್ಲೋರೋಕಾರ್ಬನ್‌ಗಳ ಬಳಕೆಯಿಂದಾಗುವ ವಾಯುಮಂಡಲದ ಓಝೋನ್‌ನ ನಿರ್ಮೂಲನವನ್ನು ಕೆಲಮಟ್ಟಿಗೆ ಜಾಗತಿಕ ಉಷ್ಣತೆಯ ಏರಿಕೆಯ ಕಾರಣವಾಗಿ ಪ್ರಸ್ತಾಪಿಸಲಾಗುತ್ತದೆ. ಎರಡರ ಮಧ್ಯೆ ಕೆಲವೊಂದು ವಿಚಾರಕ್ಷೇತ್ರ ಕೊಂಡಿಗಳಿದ್ದರೂ ಇವೆರಡರ ಮಧ್ಯದ ಸಂಬಂಧವು ಅಷ್ಟು ಗಾಢವಾದುದಲ್ಲ. ವಾಯುಮಂಡಲದ ಓಝೋನ್‌ನ ಇಳಿಕೆಯು ತಂಪಾಗಿಸಬಲ್ಲ ಪ್ರಭಾವವನ್ನು ಹೊಂದಿದ್ದರೂ, ಗಮನಾರ್ಹ ಪ್ರಮಾಣದ ಓಝೋನ್‌ ಕುಗ್ಗುವಿಕೆಯು 1970[೨೭] ರ ದಶಕದ ಉತ್ತರಾರ್ಧದವರೆಗೆ ನಡೆದಿರಲಿಲ್ಲ. ವಾಯುಮಂಡಲದ ಓಝೋನ್‌ ಮೇಲ್ಮೈ ತಾಪಮಾನ ಏರಿಕೆಗೆ ತನ್ನದೇ ಆದ ಕಾಣಿಕೆ ನೀಡುತ್ತದೆ.[೨೮]

ವಾಯುಕಲಿಲ ಮತ್ತು ಇಲ್ಲಣ[ಬದಲಾಯಿಸಿ]

ಅಟ್ಲಾಂಟಿಕ್‌ ಸಾಗರದುದ್ದಕ್ಕೂ ಇರುವ ಯುನೈಟೆಡ್‌ ಸ್ಟೇಟ್ಸ್‌ನ ಪೂರ್ವ ಕರಾವಳಿಯ ಹಡಗು ಮಾರ್ಗ. ವಾತಾವರಣದ ಮೇಲಿನ ವಾಯುಕಲಿಲಗಳ ಒತ್ತಡವು ಪರೋಕ್ಷ ಪರಿಣಾಮಗಳ ಮೂಲಕ ಭಾರೀ ವ್ಯತ್ಯಾಸವನ್ನೇ ತರಬಹುದು.

ಜಾಗತಿಕ ಮಬ್ಬಾಗಿಸುವಿಕೆ, ಭೂಮಿಯ ಮೇಲ್ಮೈನಲ್ಲಿನ ಜಾಗತಿಕ ನೇರ ಪ್ರಕಾಶಮಾನತೆಯಲ್ಲಿ ನಿಧಾನವಾಗಿ ಆಗುತ್ತಿರುವ ಇಳಿಕೆಯು 1960ರಿಂದ ಈವರೆಗಿನ ಜಾಗತಿಕ ತಾಪಮಾನ ಹೆಚ್ಚಳವನ್ನು ಭಾಗಶಃ ನಿವಾರಿಸುತ್ತಾ ಬಂದಿದೆ.[೨೯] ಅಗ್ನಿಪರ್ವತಗಳು ಹಾಗೂ ಮಾಲಿನ್ಯಕಾರಕಗಳಿಂದ ಉತ್ಪಾದನೆಯಾದ ವಾಯುಕಲಿಲಗಳೇ ಈ ಮಬ್ಬಾಗಿಸುವಿಕೆಗೆ ಪ್ರಮುಖ ಕಾರಣ. ಈ ವಾಯುಕಲಿಲಗಳು ಒಳಬರುವ ಸೂರ್ಯನ ಬೆಳಕಿನ ಪ್ರತಿಫಲನವನ್ನು ಹೆಚ್ಚಾಗಿಸಿ ತಂಪಾಗುವ ಪರಿಣಾಮ ಬೀರುತ್ತವೆ. ಜೇಮ್ಸ್‌ ಹ್ಯಾನ್‌ಸೆನ್‌ ಮತ್ತು ಸಹೋದ್ಯೋಗಿಗಳು ಅಗೆದು ತೆಗೆದ ಇಂಧನಗಳ ದಹನ—CO2 ಮತ್ತು ವಾಯುಕಲಿಲಗಳ ಪರಸ್ಪರ ಪರಿಣಾಮಗಳು ಇತ್ತೀಚಿನ ದಶಕಗಳಲ್ಲಿ ಪರಸ್ಪರ ಸರಿದೂಗಿಸುತ್ತಿರುವುದರಿಂದ ನಿವ್ವಳ ತಾಪಮಾನ ಏರಿಕೆಯು CO2-ಅಲ್ಲದ ಹಸಿರುಮನೆ ಅನಿಲಗಳಿಂದಾಗಿದೆ ಎಂಬ ಪ್ರತಿಪಾದನೆಯನ್ನು ಮುಂದಿಟ್ಟಿದ್ದಾರೆ.[೩೦]

ಸೌರ ವಿಕಿರಣಗಳ ಚದುರಿಸುವಿಕೆ ಮತ್ತು ಹೀರಿಕೊಳ್ಳುವಿಕೆಯಂತಹಾ ನೇರ ಪರಿಣಾಮಗಳಲ್ಲದೇ, ವಾಯುಕಲಿಲಗಳು ವಿಕಿರಣ ರಾಶಿಯ ಮೇಲೆ ಪರೋಕ್ಷ ಪರಿಣಾಮಗಳನ್ನು ಸಹಾ ಬೀರುತ್ತವೆ.[೩೧] ಸಲ್ಫೇಟ್‌ ವಾಯುಕಲಿಲಗಳು ಮೋಡಗಳ ಘನೀಕರಣ ಕೇಂದ್ರವಾಗಿ ವರ್ತಿಸುವುದರಿಂದ ಹೆಚ್ಚಿನ ಹಾಗೂ ಸಣ್ಣ ಪ್ರಮಾಣದ ಮೋಡಹನಿಗಳನ್ನು ಹೊಂದಿರುವ ಮೋಡಗಳ ರಚನೆಗೆ ಕಾರಣವಾಗುತ್ತವೆ. ಈ ಮಾದರಿಯ ಮೋಡಗಳು ಸೌರ ವಿಕಿರಣಗಳ ಪ್ರತಿಫಲನೆಯನ್ನು ಕಡಿಮೆ ಸಂಖ್ಯೆಯ ಹಾಗೂ ದೊಡ್ಡ ಗಾತ್ರದ ಮೋಡಹನಿ[೩೨] ಗಳಿರುವ ಮೋಡಗಳಿಗಿಂತ ದಕ್ಷವಾಗಿ ಮಾಡುತ್ತವೆ. ಈ ಪರಿಣಾಮವು ಮೋಡಹನಿಗಳ ಗಾತ್ರವು ಬಹುಪಾಲು ಸಮಾನವಾಗಿರುವಂತೆ ಮಾಡಿ ಮಳೆಹನಿಗಳ ಬೆಳವಣಿಗೆಯನ್ನು ಕಡಿಮೆ ಮಾಡಿ ಮೋಡವನ್ನು ಒಳಬರುವ ಸೂರ್ಯನ ಬೆಳಕ[೩೩] ನ್ನು ಹೆಚ್ಚು ಪ್ರತಿಫಲಿಸುವಂತೆ ಮಾಡುತ್ತದೆ.

ಇಲ್ಲಣವು ಅದು ಯಾವ ಸ್ಥಿತಿಯಲ್ಲಿದೆ ಎಂಬುದರ ಮೇಲೆ ತಂಪಾಗಿಸುವಿಕೆ ಇಲ್ಲವೇ ಬಿಸಿಯಾಗಿಸುವಿಕೆಯ ಪರಿಣಾಮ ಬೀರುತ್ತದೆ. ವಾತಾವರಣದಲ್ಲಿರುವ ಇಲ್ಲಣ ವಾಯುಕಲಿಲಗಳು ಸೌರ ವಿಕಿರಣಗಳನ್ನು ನೇರವಾಗಿ ಹೀರಿಕೊಂಡು ವಾತಾವರಣವನ್ನು ಬಿಸಿಯಾಗಿಸಿದರೂ ಪರಿಣಾಮವಾಗಿ ಭೂಮಿಯ ಮೇಲ್ಮೈಯನ್ನು ತಂಪಾಗಿಸುತ್ತದೆ. ಪ್ರಾದೇಶಿಕವಾಗಿ (ಆದರೆ ವಿಶ್ವವ್ಯಾಪಿಯಾಗಲ್ಲ), ಹಸಿರುಮನೆ ಅನಿಲಗಳಿಂದಾಗುವ 50%ನಷ್ಟು ಮೇಲ್ಮೈ ಬಿಸಿಯಾಗಿಸುವಿಕೆಯನ್ನು ವಾತಾವರಣದಲ್ಲಿರುವ ಕಂದು ಬಣ್ಣದ ಮೋಡಗಳು[೩೪] ತಡೆಯುತ್ತವೆ. ಹಿಮನದಿಗಳು ಅಥವಾ ವಿಪರೀತ ಶೀತಪ್ರದೇಶಗಳ ಹಿಮದ ಮೇಲೆ ಸಂಗ್ರಹಗೊಂಡಾಗ ಭೂಮೇಲ್ಮೈಯ ಕೆಳಮಟ್ಟದ ಪ್ರತಿಫಲನಾಂಕವು ಸಹಾ ನೇರವಾಗಿ ಮೇಲ್ಮೈ[೩೫] ಬಿಸಿಯಾಗಲು ಕಾರಣವಾಗುತ್ತದೆ. ಕಪ್ಪು ಇಂಗಾಲವೂ ಸೇರಿದಂತೆ ವಾಯುಕಲಿಲಗಳ ಪ್ರಭಾವವು ಸಂಕ್ರಾಂತಿ ಹಾಗೂ ಉಪಸಂಕ್ರಾಂತಿ ವೃತ್ತ ಪ್ರದೇಶಗಳಲ್ಲಿ, ಅದರಲ್ಲೂ ನಿರ್ದಿಷ್ಟವಾಗಿ ಏಷ್ಯಾ ಪ್ರದೇಶದಲ್ಲಿ ಎದ್ದು ಕಾಣಿಸಿದರೆ, ದಕ್ಷಿಣ ಗೋಳಾರ್ಧ[೩೬] ಮತ್ತು ಸಂಕ್ರಾಂತಿ ವೃತ್ತದ ಆಚೆಯ ಪ್ರದೇಶಗಳಲ್ಲಿ ಹಸಿರುಮನೆ ಅನಿಲಗಳ ಪ್ರಭಾವ ಹೆಚ್ಚಿದೆ.

ಸೌರ ಮಾರ್ಪಾಡುಗಳು/ಪರಿವರ್ತನೆಗಳು[ಬದಲಾಯಿಸಿ]

ಕಳೆದ ಮೂವತ್ತು ವರ್ಷಗಳಲ್ಲಿನ ಸೌರ ವೈಪರೀತ್ಯಗಳು

ಸೌರ ವಿಕಿರಣ ಹೊರಸೂಸುವಿಕೆಯಲ್ಲಿನ ವ್ಯತ್ಯಾಸಗಳು ಹಿಂದಿನ ಹವಾಮಾನ ಬದಲಾವಣೆಗಳಿಗೆ [೩೭] ಕಾರಣವಾಗಿದ್ದವು. ಸೌರ ಪ್ರಭಾವವು ಇತ್ತೀಚಿನ ದಶಕ[೩೮][೩೯] ಗಳಲ್ಲಿನ ಜಾಗತಿಕ ತಾಪಮಾನ ಹೆಚ್ಚಳದಲ್ಲಿ ನೀಡಿದ ಕೊಡುಗೆ ಗಮನಾರ್ಹವಾದುದಷ್ಟಿರಲಿಲ್ಲ ಎಂಬುದು ಸಾಧಾರಣ ಆಲೋಚನೆಯಾದರೂ, ಇತ್ತೀಚಿನ ದೃಶ್ಯತ್ವಸಿದ್ಧಾಂತ ವಿಶ್ಲೇಷಣೆಯಂತಹಾ ಕೆಲ ಅಧ್ಯಯನಗಳು ಸೌರ ಒತ್ತಡದ ಪ್ರಭಾವವನ್ನು ಕಡಿಮೆ ಅಂದಾಜಿಸಲಾಗುತ್ತಿರಬಹುದು[೪೦] ಎಂಬ ಸುಳಿವನ್ನು ನೀಡಿವೆ.

ಹಸಿರುಮನೆ ಅನಿಲಗಳು ಮತ್ತು ಸೌರ ಒತ್ತಡಗಳು ತಾಪಮಾನದ ಮೇಲೆ ವಿವಿಧ ರೀತಿಯ ಪ್ರಭಾವ ಬೀರಬಲ್ಲವು. ಹೆಚ್ಚಿದ ಸೌರ ಚಟುವಟಿಕೆ ಮತ್ತು ಹಸಿರುಮನೆ ಅನಿಲಗಳೆರಡೂ ಹವಾಗೋಳದ ತಾಪಮಾನ ಹೆಚ್ಚಳಕ್ಕೆ ಕಾರಣವಾಗುವುದೆಂದು ನಿರೀಕ್ಷಿಸುತ್ತಿದ್ದರೂ, ಸೌರ ಚಟುವಟಿಕೆಯಲ್ಲಿನ ಹೆಚ್ಚಳ ವಾಯುಮಂಡಲವನ್ನು ಬಿಸಿಯಾಗಿಸಿದರೆ ಹಸಿರುಮನೆ ಅನಿಲಗಳ ಹೆಚ್ಚಳ ವಾಯುಮಂಡಲವನ್ನು ತಂಪುಗೊಳಿಸುತ್ತದೆ.[೨] 1979ರಲ್ಲಿ ಉಪಗ್ರಹ ಮಾಪನಗಳ ಮೂಲಕ ತಾಪಮಾನ ಪತ್ತೆಹಚ್ಚಲು ಸಾಧ್ಯವಾದಾಗಿನಿಂದ ವಾಯುಮಂಡಲದ ತಾಪಮಾನ ಸ್ಥಿರವಾಗಿವೆ ಇಲ್ಲವೇ ಇಳಿಯುತ್ತಿದೆ ಎಂದು ಪರಿಶೀಲನೆಗಳು ಸೂಚಿಸುತ್ತಿವೆ. ಉಪಗ್ರಹ ಶಕೆಯ ಹಿಂದಿನ ಕಾಲದ ರೇಡಿಯೋ ಅನ್ವೇಷಕ(ವಾತಾವರಣ ಬಲೂನು)ಗಳಿಂದ ಪಡೆದ ದತ್ತಾಂಶಗಳು, ಮುಂಚಿನ ರೇಡಿಯೋ ಅನ್ವೇಷಕ[೪೧] ದಾಖಲೆಗಳಲ್ಲಿ ಬಹಳಷ್ಟು ಅನಿಶ್ಚಿತತೆಯಿದ್ದರೂ 1958ರಿಂದ ತಂಪಾಗುತ್ತಿರುವುದನ್ನು ಸೂಚಿಸುತ್ತಿದ್ದವು.

ಇದಕ್ಕೆ ಸಂಬಂಧಿಸಿದಂತೆ ಹೆನ್ರಿಕ್‌ ಸ್ವೆನ್ಸ್‌ಮಾರ್ಕ್‌ರಿಂದ ಪ್ರಸ್ತಾಪಿತ ಕಲ್ಪನೆಯ ಪ್ರಕಾರ ಸೂರ್ಯನ ಅಯಸ್ಕಾಂತೀಯ ಚಟುವಟಿಕೆಯು ವಿಶ್ವಕಿರಣಗಳನ್ನು ಚದುರಿಸುವುದರಿಂದ ಮೋಡಗಳ ಘನೀಕರಣದ ಕೇಂದ್ರದ ರಚನೆಯ ಮೇಲೆ ಪ್ರಭಾವ ಬೀರಿ, ಅದರ ಮೂಲಕ ಹವಾಮಾನದ ಮೇಲೆ ಪ್ರಭಾವ ಬೀರುತ್ತದೆ.[೪೨] ಇತರೆ ಸಂಶೋಧನೆಗಳ ಪ್ರಕಾರ ಇತ್ತೀಚಿನ ದಶಕಗಳಲ್ಲಿನ ತಾಪಮಾನ ಹೆಚ್ಚಳಕ್ಕೂ ಹಾಗೂ ವಿಶ್ವಕಿರಣ[೪೩][೪೪] ಗಳಿಗೂ ಯಾವುದೇ ಸಂಬಂಧವಿಲ್ಲ. ಇತ್ತೀಚಿನ ಅಧ್ಯಯನವೊಂದರ ಪ್ರಕಾರ ಮೋಡದ ಹೊದಿಕೆಗಳ ಮೇಲೆ ವಿಶ್ವಕಿರಣಗಳ ಪ್ರಭಾವವು, ಗಮನಾರ್ಹವಾದಂತಹ ಮೋಡಗಳ ಬದಲಾವಣೆಗಳಿಗಾಗಲಿ ಇಲ್ಲವೇ ವರ್ತಮಾನದ ಹವಾಮಾನ ಬದಲಾವಣೆಗೆ[೪೫] ಗಮನಾರ್ಹ ಕಾರಣಕರ್ತವಾಗುವುದಕ್ಕಿಂತ 100 ಅಂಶ ಅಲ್ಪ ಪ್ರಮಾಣದ್ದಾಗಿದೆ.

ಪ್ರತಿಕ್ರಿಯೆ[ಬದಲಾಯಿಸಿ]

ಧನಾತ್ಮಕ ಪ್ರತಿಕ್ರಿಯೆ ಕೆಲ ಬದಲಾವಣೆಯನ್ನು ವರ್ಧಿಸುವಂತಹಾ ಪ್ರಕ್ರಿಯೆ. ಆದ್ದರಿಂದ, ತಾಪಮಾನ ಹೆಚ್ಚಳದ ಪ್ರವೃತ್ತಿಯ ಪರಿಣಾಮವಾಗಿ ಮತ್ತಷ್ಟು ತಾಪಮಾನ ಹೆಚ್ಚಳವಾಗುವುದಾದರೆ, ಫಲಿತಾಂಶವು ಧನಾತ್ಮಕ ಪ್ರತಿಕ್ರಿಯೆ; ಆದರೆ ತಾಪಮಾನ ಹೆಚ್ಚಳದ ಪರಿಣಾಮವಾಗಿ ಮೂಲ ತಾಪಮಾನ ಹೆಚ್ಚಳವನ್ನು ಕಡಿಮೆಯಾಗುವಂತಹಾ ಪರಿಣಾಮ ಬೀರಿದರೆ, ಅದರ ಫಲಿತಾಂಶ ಋಣಾತ್ಮಕ ಪ್ರತಿಕ್ರಿಯೆ. ಜಾಗತಿಕ ತಾಪಮಾನ ಹೆಚ್ಚಳದಲ್ಲಿನ ಪ್ರಮುಖ ಧನಾತ್ಮಕ ಪ್ರತಿಕ್ರಿಯೆ ಎಂದರೆ ತಾಪಮಾನ ಹೆಚ್ಚಳದ ವಾತಾವರಣದಲ್ಲಿನ ನೀರಾವಿಯ ಪ್ರಮಾಣವನ್ನು ಹೆಚ್ಚಿಸುವ ಪ್ರವೃತ್ತಿ. ಜಾಗತಿಕ ತಾಪಮಾನ ಹೆಚ್ಚಳದಲ್ಲಿನ ಪ್ರಮುಖ ಋಣಾತ್ಮಕ ಪ್ರತಿಕ್ರಿಯೆ ಎಂದರೆ ಅವಕೆಂಪು ವಿಕಿರಣದ ಹೊರಸೂಸುವಿಕೆಯಲ್ಲಿನ ತಾಪಮಾನದ ಪಾತ್ರ: ವಸ್ತುವಿನ ತಾಪಮಾನ ಹೆಚ್ಚಳವಾಗುತ್ತಿದ್ದ ಹಾಗೆ ಅದರ ಸಮಗ್ರ ತಾಪಮಾನದ ವಿಕಿರಣ ಹೊರಸೂಸುವಿಕೆಯು ನಾಲ್ಕನೇ ಶಕ್ತತೆಯೊಂದಿಗೆ ಹೆಚ್ಚುತ್ತದೆ.

ನೀರಾವಿ ಪ್ರತಿಕ್ರಿಯೆ
ವಾತಾವರಣವು ಬಿಸಿಯಾದರೆ, ಆರ್ದ್ರವಾದ ಆವಿಯ ಒತ್ತಡವು ಹೆಚ್ಚಿ, ವಾತಾವರಣದಲ್ಲಿನ ನೀರಾವಿಯ ಪ್ರಮಾಣ ಹೆಚ್ಚಾಗತೊಡಗುತ್ತದೆ. ನೀರಾವಿಯು ಹಸಿರುಮನೆ ಅನಿಲವಾದುದರಿಂದ, ನೀರಾವಿಯ ಪ್ರಮಾಣದಲ್ಲಿನ ಹೆಚ್ಚಳ ವಾತಾವರಣವನ್ನು ಮತ್ತಷ್ಟು ಬಿಸಿಯಾಗಿಸುವುದರಿಂದ; ಈ ತಾಪಮಾನ ಹೆಚ್ಚಳವು ವಾತಾವರಣದಲ್ಲಿ ಮತ್ತಷ್ಟು ನೀರಾವಿ ರಚನೆಯಾಗುವಂತೆ ಮಾಡುತ್ತಾ (ಧನಾತ್ಮಕ ಪ್ರತಿಕ್ರಿಯೆ), ಇತರೆ ಪ್ರಕ್ರಿಯೆಗಳು ಈ ಪ್ರತಿಕ್ರಿಯೆ ಆವರ್ತನೆಯನ್ನು ನಿಲ್ಲಿಸುವವರೆಗೆ ಮುಂದುವರೆಯುತ್ತಿರುತ್ತದೆ. ಫಲಿತಾಂಶವೆಂದರೆ CO2 ಒಂದರಿಂದಲೇ ಆಗುವ ಹಸಿರುಮನೆ ಪರಿಣಾಮಕ್ಕಿಂತ ಹೆಚ್ಚಿನ ಪ್ರಭಾವವಾಗಿರುತ್ತದೆ. ಪ್ರತಿಕ್ರಿಯೆಯ ಪ್ರಕ್ರಿಯೆಯು ಗಾಳಿಯಲ್ಲಿನ ಸಮಗ್ರ ತೇವಾಂಶ ಪ್ರಮಾಣವನ್ನು ಹೆಚ್ಚಿಸಿದರೂ, ತುಲನಾತ್ಮಕ ಆರ್ದ್ರತೆಯು ಬಹಳ ಮಟ್ಟಿಗೆ ಸ್ಥಿರತೆ ಕಾಯ್ದುಕೊಳ್ಳುವುದು ಇಲ್ಲವೇ ಗಾಳಿಯು ಬಿಸಿ[೪೬] ಯಾಗಿರುವುದರಿಂದ ಅಲ್ಪ ಪ್ರಮಾಣದಲ್ಲಿ ಕಡಿಮೆಯಾಗುವುದು.
ಮೋಡದ ಪ್ರತಿಕ್ರಿಯೆ
ಮೋಡಗಳ ವೈವಿಧ್ಯತೆ ಮತ್ತು ಚದುರುವಿಕೆಯನ್ನು ತಾಪಮಾನ ಹೆಚ್ಚಳವು ಬದಲಾಯಿಸುವ ಸಾಧ್ಯತೆಯಿರುತ್ತದೆ. ಕೆಳಗಿನಿಂದ ನೋಡಿದಾಗ ಮೋಡಗಳು, ಅವಕೆಂಪು ವಿಕಿರಣವನ್ನು ಭೂಮೇಲ್ಮೈಗೆ ಮರಳಿ ಸೂಸಿ, ತಾಪಮಾನ ಹೆಚ್ಚಳ ಪರಿಣಾಮ ನೀಡಿದರೆ; ಮೇಲಿನಿಂದ ನೋಡಿದಾಗ, ಮೋಡಗಳು ಸೂರ್ಯನ ಬೆಳಕನ್ನು ಪ್ರತಿಫಲಿಸಿ ಬಾಹ್ಯಾಕಾಶಕ್ಕೆ ಅವಕೆಂಪು ವಿಕಿರಣಗಳನ್ನು ಹೊರಸೂಸಿ ತಂಪಾಗಿಸುವ ಪರಿಣಾಮ ಬೀರುತ್ತವೆ. ಒಟ್ಟಾರೆ ಪರಿಣಾಮವು ತಾಪಮಾನ ಹೆಚ್ಚಳವೋ ಅಥವಾ ತಂಪಾಗುವಿಕೆಯೋ ಎಂಬುದು ಮೋಡಗಳ ವಿಧಗಳು ಹಾಗೂ ಅವುಗಳಿರುವ ಎತ್ತರದ ವಿವರಗಳ ಮೇಲೆ ಅವಲಂಬಿತವಾಗಿರುತ್ತದೆ. ಈ ವಿವರಗಳನ್ನು ಉಪಗ್ರಹ ದತ್ತಾಂಶದ ಅನ್ವೇಷಣೆಗೆ ಮುನ್ನಾ ಅಸ್ಪಷ್ಟವಾದ ರೀತಿಯಲ್ಲಿ ಪರಿಶೀಲನೆ ಮಾಡಿದ್ದುದರಿಂದ ಹವಾಮಾನ ಮಾದರಿ[೪೬] ಗಳಲ್ಲಿ ಪ್ರತಿನಿಧಿಸಲು ಕಷ್ಟಸಾಧ್ಯ.
ಅವನತಿ/ಕಾಲಾವಧಿಯ ದರ
ಹವಾಗೋಳದಲ್ಲಿ ಎತ್ತರ ಹೆಚ್ಚಾದಂತೆ ವಾತಾವರಣದ ತಾಪಮಾನ ಕುಗ್ಗುತ್ತದೆ. ತಾಪಮಾನದೊಂದಿಗೆ ಅವಕೆಂಪು ವಿಕಿರಣದ ಹೊರಸೂಸುವಿಕೆ ವ್ಯತ್ಯಾಸವಾಗುವುದರಿಂದ, ಕೆಳಮಟ್ಟದ ವಾತಾವರಣದಿಂದ ನೆಲದೆಡೆಗೆ ಹೊರಸೂಸುವ ಪ್ರಮಾಣಕ್ಕಿಂತ ಸಾಪೇಕ್ಷವಾಗಿ ತಂಪಾಗಿರುವ ಮೇಲಿನ ವಾತಾವರಣದಿಂದ ಬಾಹ್ಯಾಕಾಶಕ್ಕೆ ದೀರ್ಘಅಲೆ/ನೀಳಅಲೆ ವಿಕಿರಣವು ಹೊರಬೀಳುವ ಪ್ರಮಾಣ ಕಡಿಮೆಯಿರುತ್ತದೆ. ಹಾಗಾಗಿ ಹಸಿರುಮನೆ ಪರಿಣಾಮದ ತೀವ್ರತೆಯು ವಾತಾವರಣ ಎತ್ತರಕ್ಕನುಗುಣವಾಗಿ ತಾಪಮಾನದ ಇಳಿಕೆಯ ದರದ ಮೇಲೆ ಅವಲಂಬಿತವಾಗಿರುತ್ತದೆ. ಸಿದ್ಧಾಂತ ಹಾಗೂ ಹವಾಮಾನ ಮಾದರಿಗಳೆರಡೂ ಜಾಗತಿಕ ತಾಪಮಾನ ಹೆಚ್ಚಳವು ಎತ್ತರಕ್ಕನುಗುಣವಾಗಿ ತಾಪಮಾನ ಇಳಿಕೆಯ ದರವನ್ನು ಇಳಿಸಿ, ಹಸಿರುಮನೆ ಪರಿಣಾಮವನ್ನು ನಿಷ್ಫಲಗೊಳಿಸುವಂತಹಾ ಋಣಾತ್ಮಕ ಅವನತಿ ದರ ಪ್ರತಿಕ್ರಿಯೆ ಗೆ ಕಾರಣವಾಗುತ್ತದೆ ಎಂದು ಸೂಚಿಸುತ್ತಿವೆ. ಗ್ರಹಿಕೆಯಲ್ಲಿನ ಸಣ್ಣ ತಪ್ಪುಗಳಿಂದಾಗಿ ಎತ್ತರಕ್ಕನುಗುಣವಾಗಿ ತಾಪಮಾನ ಬದಲಾವಣೆಯ ದರಗಳ ಅಳೆಯುವಿಕೆಯು ವ್ಯತ್ಯಾಸವಾಗುವುದರಿಂದ ವಿಶ್ಲೇಷಣೆ[೪೭] ಗಳು ಮಾದರಿಗಳೊಂದಿಗೆ ಹೊಂದುತ್ತವೆಯೇ ಎಂದು ತಾಳೆ ಹಾಕುವುದು ಕಷ್ಟವಾಗುತ್ತಿದೆ.
ಹಿಮ-ಪ್ರತಿಫಲನಾಂಕ ಪ್ರತಿಕ್ರಿಯೆ
ಸಮುದ್ರ ನೀರ್ಗಲ್ಲಿನ ಒಂದು ಭಾಗವನ್ನು ತೋರಿಸುವ ವೈಮಾನಿಕ ಚಿತ್ರ. ತಿಳಿನೀಲ ಪ್ರದೇಶಗಳು ಕರಗಿದ ನೀರಿನ ಕೊಳಗಳಾದರೆ ದಟ್ಟ ಪ್ರದೇಶಗಳು ಮುಕ್ತ ನೀರಾಗಿದ್ದು ಇವೆರಡರ ಪ್ರತಿಫಲನಾಂಕವು ಶ್ವೇತ ಸಮುದ್ರ ನೀರ್ಗಲ್ಲಿಗಿಂತ ಕಡಿಮೆ ಇರುತ್ತದೆ. ಕರಗುವ ಹಿಮವು ಹಿಮ-ಪ್ರತಿಫಲನಾಂಕ ಪ್ರತಿಕ್ರಿಯೆಯ ಮೇಲೆ ಪರಿಣಾಮ ಬೀರುತ್ತದೆ.
ಹಿಮವು ಕರಗಿದಾಗ, ಭೂಭಾಗ ಅಥವಾ ಮುಕ್ತ ನೀರು ಅದರ ಸ್ಥಳವನ್ನು ಆಕ್ರಮಿಸುತ್ತದೆ. ಭೂಭಾಗ ಹಾಗೂ ಮುಕ್ತ ನೀರುಗಳೆರಡೂ ಹಿಮಕ್ಕಿಂತ ಸರಾಸರಿ ಕಡಿಮೆ ಪ್ರತಿಫಲಿಸುವುದರಿಂದ ಹೆಚ್ಚು ಸೌರ ವಿಕಿರಣವನ್ನು ಹೀರಿಕೊಳ್ಳುತ್ತವೆ. ಇದು ಮತ್ತಷ್ಟು ತಾಪಮಾನ ಹೆಚ್ಚಳಕ್ಕೆ ಕಾರಣವಾಗಿ, ಅದರಿಂದಾಗಿ ಹಿಮ ಕರಗುವಿಕೆ ಹೆಚ್ಚಾಗಿ, ಇದೇ ಆವರ್ತನ ಮುಂದುವರೆಯುತ್ತದೆ.[೪೮]
ಆರ್ಕ್‌ಟಿಕ್‌ ಮೀಥೇನ್‌ ಬಿಡುಗಡೆ
ತಾಪಮಾನ ಹೆಚ್ಚಳವು ಆರ್ಕ್‌ಟಿಕ್[೪೯] ಪ್ರದೇಶದಲ್ಲಿನ ಮೀಥೇನ್‌ ಬಿಡುಗಡೆಗೂ ಸಹಾ ಪ್ರಚೋದಕವಾಗಿ ಕೆಲಸ ಮಾಡುತ್ತಿದೆ. ಸೈಬೀರಿಯಾದಲ್ಲಿನ ಘನೀಕರಿಸಿದ ಸಸ್ಯಾಂಗಾರ ಭೂಮಿಯಂತಹಾ ದ್ರವೀಭವಿಸುತ್ತಿರುವ ಶೀತ ಕೆಳಭೂಸ್ತರ ಮತ್ತು ಸಮುದ್ರ ತಳದಲ್ಲಿರುವ ಮೀಥೇನ್‌ ಜಾಲರಿಗಳಿಂದ ಹೊರಬರುವ ಮೀಥೇನ್‌ ಧನಾತ್ಮಕ ಪ್ರತಿಕ್ರಿಯೆಗೆ ಕಾರಣವಾಗುತ್ತದೆ.[೫೦]
ಸಾಗರಗಳ CO2 ಹೀರಿಕೆಯ ಪ್ರಮಾಣದಲ್ಲಿನ ಇಳಿಕೆ
ಇಂಗಾಲವನ್ನು ಪ್ರತ್ಯೇಕವಾಗಿರಿಸಬಲ್ಲ ಸಾಗರ ಪರಿಸರ ವ್ಯವಸ್ಥೆಯ ಸಾಮರ್ಥ್ಯವು ಸಾಗರಗಳು ಬಿಸಿಯಾದಂತೆ ಇಳಿಕೆಯಾಗುತ್ತದೆ ಎಂದು ಊಹಿಸಲಾಗಿದೆ. ಇದೇಕೆಂದರೆ ತಾಪಮಾನ ಹೆಚ್ಚಳವು ಮೆಸೊಪೆಲಜಿಕ್‌ ವಲಯದ ಜೀವ ಪೋಷಣೆಯ ಸಾಮರ್ಥ್ಯವನ್ನು ಇಳಿಸುವುದರಿಂದ (ಸುಮಾರು 200ರಿಂದ 1000 mವರೆಗಿನ ಆಳದಲ್ಲಿ), ಅಲ್ಪ ಸಾಮರ್ಥ್ಯದ ಇಂಗಾಲ[೫೧]ಜೈವಿಕ ಪಂಪ್‌ ಆದ ಸಣ್ಣ ತೇಲುಸಸ್ಯಗಳಿಗೆ ಅನುಕೂಲಕರವಾಗಿ ಡಯಾಟಮ್‌ಗಳ ಬೆಳವಣಿಗೆಯನ್ನು ನಿಯಂತ್ರಿಸುತ್ತದೆ.
ಅನಿಲ ಬಿಡುಗಡೆ
ಜೈವಿಕ ಮೂಲದ ಅನಿಲಗಳ ಬಿಡುಗಡೆಯ ಮೇಲೆ ಜಾಗತಿಕ ತಾಪಮಾನ ಹೆಚ್ಚಳವು ಪ್ರಭಾವ ಬೀರಬಹುದೆಂಬ ಅಭಿಪ್ರಾಯವಿದ್ದರೂ, ಆ ಪರಿಣಾಮಗಳ ಮೇಲಿನ ಸಂಶೋಧನೆಗಳು ಇನ್ನೂ ಆರಂಭದ ಹಂತದಲ್ಲಿವೆ. ಸಸ್ಯಾಂಗಾರದಿಂದ ಬಿಡುಗಡೆಯಾಗುವ ನೈಟ್ರಸ್‌ ಆಕ್ಸೈಡ್‌ನಂತಹಾ ಕೆಲ ಅನಿಲಗಳು ನೇರವಾಗಿ ಹವಾಮಾನ[೫೨] ದ ಮೇಲೆ ಪರಿಣಾಮ ಬೀರುತ್ತವೆ. ಸಾಗರಗಳಿಂದ ಬಿಡುಗಡೆಯಾಗುವ ಡೈಮೀಥೈಲ್‌ ಸಲ್ಫೈಡ್‌ನಂತಹಾ ಇನ್ನಿತರ ಅನಿಲಗಳು ಪರೋಕ್ಷ ಪರಿಣಾಮ[೫೩] ಗಳನ್ನು ಬೀರುತ್ತವೆ.

ಹವಾಮಾನ ಮಾದರಿಗಳು[ಬದಲಾಯಿಸಿ]

ಟೆಂಪ್ಲೇಟು:Double image stack

ಭವಿಷ್ಯದ ಹವಾಮಾನ ಬದಲಾವಣೆಗಳನ್ನು ಪ್ರಕ್ಷೇಪಿಸಲು ದ್ರವ ಚಲನಶಾಸ್ತ್ರ, ಉಷ್ಣಬಲ ವಿಜ್ಞಾನ ಮತ್ತು ವಿಕಿರಣಾತ್ಮಕ ವರ್ಗಾವಣೆಗಳು ಸೇರಿದಂತೆ ಭೌತಶಾಸ್ತ್ರೀಯ ನಿಯಮಗಳ ಮೇಲೆ ಆಧಾರಿತವಾದ ಗಣಿತ ಮಾದರಿಗಳೇ ಪ್ರಮುಖ ಸಾಧನಗಳು. ಅವು ಆದಷ್ಟು ಪ್ರಕ್ರಿಯೆಗಳನ್ನು ಒಳಗೊಳ್ಳಲು ಪ್ರಯತ್ನಿಸಿದರೂ ಹವಾಮಾನ ವ್ಯವಸ್ಥೆಯ ಬಗೆಗಿರುವ ಅರಿವಿನ ಮಿತಿ ಮತ್ತು ಲಭ್ಯವಿರುವ ಗಣಕ ಸಾಮರ್ಥ್ಯಗಳಂತಹಾ ಇತಿಮಿತಿಗಳಿಂದಾಗಿ ವಾಸ್ತವಿಕ ಹವಾಮಾನ ವ್ಯವಸ್ಥೆಯ ಸರಳೀಕರಣ ಅನಿವಾರ್ಯ. ಎಲ್ಲಾ ಆಧುನಿಕ ಹವಾಮಾನ ಮಾದರಿಗಳು ವಾಸ್ತವವಾಗಿ ಭೂಮಿಯ ವಿವಿಧ ಭಾಗಗಳ ಮಾದರಿಗಳ ಸಂಯೋಜನೆ ಗಳಷ್ಟೇ. ವಾಯು ಚಲನೆ, ತಾಪಮಾನ, ಮೋಡಗಳು, ಮತ್ತು ಇನ್ನಿತರ ಹವಾಮಾನದ ಗುಣಲಕ್ಷಣಗಳಿಗೆ ಸಂಬಂಧಿಸಿದ ಹವಾಮಾನದ ಮಾದರಿ ತಾಪಮಾನ, ಲವಣಾಂಶ, ಮತ್ತು ಸಾಗರ ಜಲದ ಆವರ್ತನಗಳನ್ನು ಮುನ್ಸೂಚಿಸುವ ಸಾಗರ ಮಾದರಿ; ಭೂಭಾಗ ಮತ್ತು ಸಮುದ್ರಗಳ ಮೇಲಿನ ಹಿಮದ ಹೊದಿಕೆಗಳ ಬಗೆಗಿನ ಮಾದರಿಗಳು; ಮಣ್ಣು ಮತ್ತು ಸಸ್ಯವರ್ಗಗಳಿಂದ ವಾತಾವರಣಕ್ಕೆ ಶಾಖ ಮತ್ತು ಆರ್ದ್ರತೆಗಳ ವರ್ಗಾವಣೆಗಳು ಇದರಲ್ಲಿ ಸೇರಿರುತ್ತವೆ. ರಾಸಾಯನಿಕ ಹಾಗೂ ಜೈವಿಕ ಪ್ರಕ್ರಿಯೆ[೫೪] ಗಳ ವರ್ತನೆಗಳಿಗೆ ಸಂಬಂಧಿಸಿದ ಮಾದರಿಗಳೂ ಇವುಗಳಲ್ಲಿವೆ. ಹಸಿರುಮನೆ ಅನಿಲಗಳ ಹೆಚ್ಚುವಿಕೆಯಿಂದ ತಾಪಮಾನ ಹೆಚ್ಚಳ ಎಂಬುದು ಈ ಮಾದರಿಗಳ ಊಹೆಯಾಗದೇ; ಬದಲಿಗೆ, ಹಸಿರುಮನೆ ಅನಿಲಗಳೊಂದಿಗೆ ವಿಕಿರಣಾತ್ಮಕ ವರ್ಗಾವಣೆ ಹಾಗೂ ಮಾದರಿಗಳ[೫೫] ಇನ್ನಿತರ ಭೌತಿಕ ಪ್ರಕ್ರಿಯೆಗಳ ಪರಸ್ಪರ ಕ್ರಿಯೆಯ ಫಲಿತಾಂಶವಾಗಿದೆ. ಮಾದರಿಗಳಲ್ಲಿನ ಭಿನ್ನತೆಗಳು ಬಹ್ವಂಶ ಹಸಿರುಮನೆ ಅನಿಲಗಳ ಹೊರಸೂಸುವಿಕೆಯನ್ನು ಪ್ರದಾನವಾಗಿ ಬಳಸುವುದರಿಂದಾದರೂ ನಿಗದಿತ ಹಸಿರುಮನೆ ಅನಿಲ ಸಂಗ್ರಹಣೆಯ ತಾಪಮಾನ ಪರಿಣಾಮಗಳು (ಹವಾಮಾನ ಸೂಕ್ಷ್ಮತೆ) ಬಳಸಿದ ಮಾದರಿಯ ಮೇಲೆ ಅವಲಂಬಿತವಾಗಿರುತ್ತದೆ. ಪ್ರಸಕ್ತ-ಪೀಳಿಗೆಯ[೫೬] ಮಾದರಿಗಳ ಅನಿಶ್ಚಿತತೆಯ ಪ್ರಮುಖ ಮೂಲವೆಂದರೆ ಮೋಡಗಳ ಪ್ರಾತಿನಿಧ್ಯ.

ಭವಿಷ್ಯದ ಹವಾಮಾನ ಬಗೆಗಿನ ಜಾಗತಿಕ ಹವಾಮಾನ ಮಾದರಿಗಳ ಪ್ರಕ್ಷೇಪಗಳು ಬಹಳಷ್ಟು ಮಟ್ಟಿಗೆ IPCC ಹೊರಸೂಸುವಿಕೆಯ ಸಂದರ್ಭಗಳ ಬಗ್ಗೆ ವಿಶೇಷ ವರದಿ(SRES)ಯಲ್ಲಿ ನೀಡಲಾದ ಹಸಿರುಮನೆ ಅನಿಲ ಹೊರಸೂಸುವಿಕೆಯ ಅಂದಾಜು ವಿವರವನ್ನೇ ಬಳಸಿವೆ. ಮಾನವ-ಕೃತ ಹೊರಸೂಸುವಿಕೆಗಳೊಂದಿಗೆ, ಕೆಲ ಮಾದರಿಗಳು ಇಂಗಾಲ ಆವರ್ತನಗಳ ಅನುಕರಣವನ್ನು ಸಹಾ ಹೊಂದಿವೆ; ಈ ಪ್ರತಿಕ್ರಿಯೆಗಳು ಅನಿಶ್ಚಿತವಾದರೂ ಇದು ಸಾಧಾರಣವಾಗಿ ಧನಾತ್ಮಕ ಪ್ರತಿಕ್ರಿಯೆಯನ್ನು ಸೂಚಿಸುತ್ತದೆ. ಕೆಲ ಪರಿವೀಕ್ಷಣಾ ಅಧ್ಯಯನಗಳು ಧನಾತ್ಮಕ ಪ್ರತಿಕ್ರಿಯೆಯನ್ನು ತೋರುತ್ತವೆ.[೫೭][೫೮][೫೯] ಭವಿಷ್ಯದ ಹಸಿರುಮನೆ ಅನಿಲಗಳ ಸಂಗ್ರಹ ಮತ್ತು ಹವಾಮಾನದ ಸೂಕ್ಷ್ಮತೆಯ ಬಗ್ಗೆ ಅನಿಶ್ಚಿತತೆಯಿದ್ದರೂ 1980–1999ರ[೧] ಅವಧಿಗೆ ಹೋಲಿಸಿದಂತೆ 21ನೇ ಶತಮಾನದ ಕೊನೆಯ ಹೊತ್ತಿಗೆ 1.1 °C to 6.4 °C (2.0 °F to 11.5 °F)ರಷ್ಟು ತಾಪಮಾನ ಹೆಚ್ಚಳವನ್ನು IPCC ನಿರೀಕ್ಷಿಸುತ್ತಿದೆ.

ಅನೇಕ ನೈಸರ್ಗಿಕ ಮತ್ತು ಮಾನವ-ಕೃತ ಕಾರಣಗಳಿಂದಾದ ಬದಲಾವಣೆಯ ಬಗ್ಗೆ ಮಾದರಿಗಳು ನೀಡುವ ಪ್ರಕ್ಷೇಪದೊಂದಿಗೆ ಹೋಲಿಸಿ ಇತ್ತೀಚಿನ ಹವಾಮಾನ ಬದಲಾವಣೆಯ ಕಾರಣಗಳನ್ನು ಪತ್ತೆಹಚ್ಚಲು ಸಹಾ ಈ ಮಾದರಿಗಳನ್ನು ಬಳಸಲಾಗುತ್ತಿದೆ. ಸರಿ ಸುಮಾರು 1910ರಿಂದ 1945ರವರೆಗಿನ ಅವಧಿಯಲ್ಲಿನ ತಾಪಮಾನ ಹೆಚ್ಚಳಕ್ಕೆ ನೈಸರ್ಗಿಕ ವೈಪರೀತ್ಯ ಅಥವಾ ಮಾನವ ಪ್ರಭಾವಗಳು ಕಾರಣವೆಂಬುದನ್ನು ನಿಶ್ಚಯವಾಗಿ ಸೂಚಿಸದಿದ್ದರೂ, 1970ರ ನಂತರದ ತಾಪಮಾನ ಹೆಚ್ಚಳಕ್ಕೆ ಮಾನವ-ಕೃತ ಹಸಿರುಮನೆ ಅನಿಲ ಹೊರಸೂಸುವಿಕೆ[೬೦] ಯೇ ಪ್ರಮುಖ ಕಾರಣವೆಂದು ಸೂಚಿಸುತ್ತವೆ.

ಮಾದರಿಗಳ ಭೌತಶಾಸ್ತ್ರೀಯ ವಾಸ್ತವಿಕೆಯನ್ನು ಪ್ರಸ್ತುತ ಅಥವಾ ಹಿಂದಿನ ಹವಾಮಾನಗಳನ್ನು ಅನುಕರಿಸುವ ಸಾಮರ್ಥ್ಯದ ಮೂಲಕ ಅಳೆಯಲಾಗುತ್ತದೆ.[೬೧] ಪ್ರಸ್ತುತ ಹವಾಮಾನ ಮಾದರಿಗಳು ಹಿಂದಿನ ಶತಮಾನದ ಜಾಗತಿಕ ತಾಪಮಾನ ಬದಲಾವಣೆಗಳ ವೀಕ್ಷಣೆಯನ್ನು ಹೋಲುತ್ತಿದ್ದರೂ ಹವಾಮಾನದ ಎಲ್ಲಾ ಅಂಶಗಳನ್ನು ಅನುಕರಿಸುವುದಿಲ್ಲ.[೨೪] ಡೇವಿಡ್‌ ಡಗ್ಲಾಸ್‌ ಮತ್ತು ಸಹೋದ್ಯೋಗಿಗಳು 2007ರಲ್ಲಿ ನಡೆಸಿದ ಅಧ್ಯಯನದಲ್ಲಿ ಮಾದರಿಗಳು ಉಷ್ಣವಲಯದ ಹವಾಗೋಳದಲ್ಲಿನ ಬದಲಾವಣೆಯನ್ನು ನಿಖರವಾಗಿ ಮುನ್ಸೂಚಿಸಿರಲಿಲ್ಲವೆಂದು ತಿಳಿಯಪಟ್ಟರೆ, 2008ರಲ್ಲಿ ಬೆನ್‌ ಸ್ಯಾಂಟರ್‌ ನೇತೃತ್ವದ 17-ಮಂದಿಯ ತಂಡದಿಂದ ಪ್ರಕಟಿತವಾದ ಪ್ರಬಂಧವು ಡಗ್ಲಾಸ್‌ ಅಧ್ಯಯನದಲ್ಲಿನ ದೋಷಗಳು ಮತ್ತು ತಪ್ಪು ಅಂದಾಜುಗಳನ್ನು ಗುರುತಿಸಿತಲ್ಲದೇ, ಅಂಕಿಅಂಶಗಳ ವಿಚಾರದಲ್ಲಿ ಪರಿವೀಕ್ಷಣೆಗಳು ಮತ್ತು ಮಾದರಿಗಳು ಭಿನ್ನವಾಗಿರಲಿಲ್ಲ ಎಂಬ ಅಭಿಪ್ರಾಯ ಮಂಡಿಸಿತು.[೬೨] IPCCಯು ಬಳಸಿದ ಹವಾಮಾನ ಮಾದರಿಗಳು ಜಾಗತಿಕ ತಾಪಮಾನ ಹೆಚ್ಚಳದ ಎಲ್ಲಾ ಪರಿಣಾಮಗಳನ್ನು ನಿಖರವಾಗಿ ಮುನ್ಸೂಚಿಸಲಾಗುತ್ತಿಲ್ಲ ಉದಾಹರಣೆಗೆ, ಶೀತಪ್ರದೇಶದ ಸಂಕುಚನವು ನೀಡಿದ್ದ ಮುನ್ಸೂಚನೆ[೬೩] ಗಿಂತ ವೇಗವಾಗಿ ಆಗಿತ್ತು.

ಆರೋಪಿಸಿದ ಮತ್ತು ನಿರೀಕ್ಷಿತ ಪರಿಣಾಮಗಳು[ಬದಲಾಯಿಸಿ]

ಪರಿಸರೀಯ[ಬದಲಾಯಿಸಿ]

1800ರ ಶತಮಾನದ ಮೊದಲ ಭಾಗದಿಂದ ಹಿಮನದಿಗಳ ಹಿಂಜರಿಕೆ ಇತ್ತೆಂಬುದಕ್ಕೆ ವಿರಳ ದಾಖಲೆಗಳಿವೆ. WGMS ಮತ್ತು NSIDCಗಳಿಗೆ ವರದಿಪಡಿಸುವಂತೆ 1950ರ ದಶಕದಲ್ಲಿ ಹಿಮನದಿಗಳ ದ್ರವ್ಯರಾಶಿಗಳ ಅವಲೋಕನವನ್ನು ಮಾಡಲು ಸಹಾಯವಾಗುವಂತಹಾ ಮಾಪನೆಗಳು ಆರಂಭವಾದವು.

ಸಾಮಾನ್ಯವಾಗಿ ನಿರ್ದಿಷ್ಟ ವಾತಾವರಣದ ಸಂಗತಿಗಳನ್ನು ಜಾಗತಿಕ ತಾಪಮಾನ ಹೆಚ್ಚಳಕ್ಕೆ ತಳುಕು ಹಾಕಲು ಅಸಾಧ್ಯ. ಬದಲಿಗೆ, ಜಾಗತಿಕ ತಾಪಮಾನ ಹೆಚ್ಚಳ ತೀರ ಸಾಂದ್ರವಾದ ಅವಕ್ಷೇಪನದ ಆವರ್ತನ ಮತ್ತು ತೀಕ್ಷ್ಣತೆಗಳ ಬದಲಾವಣೆಗಳ ಒಟ್ಟಾರೆ ವ್ಯಾಪ್ತಿ ಮತ್ತು ಸಂಗತಿಗಳ ತೀಕ್ಷ್ಣತೆಗಳನ್ನು ಬದಲಾಯಿಸುವ ಸಾಧ್ಯತೆ ಇರುತ್ತದೆ. ವಿಸ್ತಾರವಾದ ಪರಿಣಾಮಗಳೆಂದರೆ ಹಿಮನದಿಗಳ ಹಿಂಜರಿಕೆ, ಶೀತಪ್ರದೇಶಗಳ ಕುಗ್ಗುವಿಕೆ, ಮತ್ತು ವಿಶ್ವದಾದ್ಯಂತ ಸಮುದ್ರಮಟ್ಟ ಏರಿಕೆ. ನೈಸರ್ಗಿಕ ವಾತಾವರಣ ಮತ್ತು ಮಾನವ ಜೀವನಗಳೆರಡರ ಮೇಲಿನ ಕೆಲವು ಪರಿಣಾಮಗಳನ್ನು ಈಗಾಗಲೇ ಭಾಗಶಃವಾದರೂ ಜಾಗತಿಕ ತಾಪಮಾನ ಹೆಚ್ಚಳಕ್ಕೆ ತಳಕು ಹಾಕಲಾಗಿದೆ. IPCCಯ 2001ರ ವರದಿಯ ಪ್ರಕಾರ ಹಿಮನದಿಗಳ ಹಿಂಜರಿಕೆ, ಲಾರ್ಸನ್‌ ಹಿಮ ಹಲಗೆಯಂತಹಾ ಹಿಮ ಹಲಗೆಗಳ ಸ್ಥಳಾಂತರ/ಅಲುಗುವಿಕೆ, ಸಮುದ್ರಮಟ್ಟ ಏರಿಕೆ, ಮಳೆ ಮಾದರಿಯ ಬದಲಾವಣೆ, ಮತ್ತು ತೀವ್ರತರವಾದ ವಾತಾವರಣ ಸಂಗತಿಗಳ ಹೆಚ್ಚಿದ ಆವರ್ತನೆ ಮತ್ತು ತೀಕ್ಷ್ಣತೆಗಳಿಗೆ ಭಾಗಶಃ ಜಾಗತಿಕ ತಾಪಮಾನ ಹೆಚ್ಚಳವೇ ಕಾರಣ.[೬೪] ಇತರ ನಿರೀಕ್ಷಿತ ಪರಿಣಾಮಗಳೆಂದರೆ ಕೆಲ ಪ್ರದೇಶಗಳಲ್ಲಿ ನೀರಿನ ಅಲಭ್ಯತೆ ಮತ್ತು ಇನ್ನಿತರ ಕಡೆ ಹೆಚ್ಚಿದ ಅವಕ್ಷೇಪನ, ಪರ್ವತಗಳ ಹಿಮಪದರಗಳ ಬದಲಾವಣೆ, ಮತ್ತು ಹೆಚ್ಚಿನ ತಾಪಮಾನದಿಂದಾಗುವ ಆರೋಗ್ಯದ ಮೇಲಿನ ವ್ಯತಿರಿಕ್ತ ಪರಿಣಾಮಗಳು.[೬೫]

ಜಾಗತಿಕ ತಾಪಮಾನ ಹೆಚ್ಚಳದಿಂದಾಗುವ ಸಾಮಾಜಿಕ ಮತ್ತು ಆರ್ಥಿಕ ಪರಿಣಾಮಗಳನ್ನು ಬಾಧಿತ ಪ್ರದೇಶಗಳಲ್ಲಿನ ಹೆಚ್ಚಿದ ಜನಸಂಖ್ಯೆ ಸಾಂದ್ರತೆಯು ಇನ್ನೂ ಉಲ್ಬಣಗೊಳಿಸಬಹುದು. ಸಮಶೀತೋಷ್ಣ ಪ್ರದೇಶಗಳು ಶೀತ-ಸಂಬಂಧಿ ಸಾವು[೬೬] ಗಳ ಸಂಖ್ಯೆ ಕಡಿಮೆಯಾಗುವಂತಹ ಅನುಕೂಲಗಳನ್ನು ಪಡೆಯಬಹುದು ಎಂದು ನಿರೀಕ್ಷಿಸಬಹುದು. ನಿರೀಕ್ಷಿಸಬಹುದಾದ ಪರಿಣಾಮಗಳು ಮತ್ತು ಇತ್ತೀಚಿನ ಗ್ರಹಿಕೆಗಳ ಸಾರಾಂಶವನ್ನು ವರ್ಕಿಂಗ್‌ ಗ್ರೂಪ್‌ II ತಂಡದಿಂದ ರಚಿತವಾದ IPCCಯ ಮೂರನೇ ನಿರ್ಧಾರಕ ವರದಿಯಲ್ಲಿ ನೋಡಬಹುದು.[೬೪] ಹೊಸದಾದ IPCC ನಾಲ್ಕನೇ ನಿರ್ಧಾರಕ ವರದಿಯ ಸಾರಾಂಶವು ಉತ್ತರ ಅಟ್ಲಾಂಟಿಕ್‌ ಸಾಗರದಲ್ಲಿ 1970ರಿಂದ ಉಷ್ಣವಲಯದ ಚಂಡಮಾರುತ ಚಟುವಟಿಕೆಯ ತೀವ್ರತೆಯಲ್ಲಿನ ಹೆಚ್ಚಳಕ್ಕೂ, ಹಾಗೂ ಸಮುದ್ರ ಮೇಲ್ಮೈ ತಾಪಮಾನದ ಹೆಚ್ಚಳದೊಂದಿಗೆ ಪರಸ್ಪರ ಸಂಬಂಧವಿರುವುದಕ್ಕೆ ವೀಕ್ಷಣಾತ್ಮಕ ನಿದರ್ಶನವಿದೆಯೆಂದು (ನೋಡಿರಿ ಅಟ್ಲಾಂಟಿಕ್‌ ಬಹುದಶಕ ಆಂದೋಲನ), ಆದರೆ ದೀರ್ಘಕಾಲೀನ ಪ್ರವೃತ್ತಿಗಳ ಪತ್ತೆಹಚ್ಚುವಿಕೆಯು ರೂಢಿಗತ ಉಪಗ್ರಹ ಪರಿವೀಕ್ಷಣೆಗೆ ಮುಂಚಿನ ಅವಧಿಯ ದಾಖಲೆಗಳ ಕಳಪೆ ಗುಣಮಟ್ಟದಿಂದಾಗಿ ಜಟಿಲಗೊಂಡಿದೆಯೆಂದು ಸೂಚಿಸುತ್ತದೆ. ಪ್ರಪಂಚದಾದ್ಯಂತದ ಉಷ್ಣವಲಯದ ಚಂಡಮಾರುತ[೧] ದ ವಾರ್ಷಿಕ ಸಂಭವಿಸುವಿಕೆಯ ಸಂಖ್ಯೆಯಲ್ಲಿ ಯಾವುದೇ ಸ್ಪಷ್ಟ ಪ್ರವೃತ್ತಿಯಿಲ್ಲ ಎಂದೂ ಈ ಸಾರಾಂಶ ಹೇಳುತ್ತದೆ.

ಇದಕ್ಕೂ ಹೆಚ್ಚಿನದಾಗಿನ ನಿರೀಕ್ಷಿತ ಪರಿಣಾಮಗಳೆಂದರೆ 1980-1999[೧] ರ ಅವಧಿಗೆ ಹೋಲಿಸಿದಂತೆ 2090-2100ರಲ್ಲಿ ಆಗಬಹುದಾದ 0.18 to 0.59 meters (0.59 to 1.9 ft)ರಷ್ಟು ಸಮುದ್ರಮಟ್ಟದ ಏರಿಕೆ, ಶೀತಪ್ರದೇಶಗಳ ಕುಗ್ಗುವಿಕೆಯಿಂದುಂಟಾಗುವ ಹೊಸ ವ್ಯಾಪಾರಿ ಮಾರ್ಗಗಳು,[೬೭] ಸಂಭವನೀಯ ಥರ್ಮೋಹಲೈನ್‌ ಪರಿಚಲನೆಯ ವೇಗದ ಇಳಿಕೆ, ಏರುತ್ತಾ ಹೋಗುವ ತೀವ್ರತೆಯ (ಆದರೆ ಕಡಿಮೆ ಪುನರಾವರ್ತನೆಯ) ಚಂಡಮಾರುತಗಳು ಮತ್ತು ವಾತಾವರಣ ವೈಪರೀತ್ಯಗಳು,[೬೮] ಓಝೋನ್‌ ಪದರದಲ್ಲಿನ ಇಳಿಕೆ, ಕೃಷಿ ಇಳುವರಿಯ ವ್ಯತ್ಯಾಸಗಳು, ಮಲೇರಿಯಾ ಮತ್ತು ಡೆಂಗ್ಯೂ ಜ್ವರದ ಹರಡಿಕೆಯ ಪ್ರಮಾಣದ ಹೆಚ್ಚಳಕ್ಕೆ ಕಾರಣವಾಗಬಲ್ಲ,[೬೯] ಹವಾಮಾನ-ಅವಲಂಬಿತ ರೋಗಾಣುಗಳ ವ್ಯಾಪ್ತಿಯಲ್ಲಿನ ಬದಲಾವಣೆಗಳು,[೭೦] ಮತ್ತು ಸಾಗರದೊಳಗಿನ ಆಮ್ಲಜನಕ ಬರಿದಾಗುವಿಕೆ.[೭೧] ವಾಯುಮಂಡಲದಲ್ಲಿನ CO2 ಹೆಚ್ಚಳವು ಸಾಗರದಲ್ಲಿ ಕರಗುವ CO2 ಪ್ರಮಾಣವನ್ನು ಹೆಚ್ಚಿಸುತ್ತದೆ.[೭೨] ಸಾಗರದಲ್ಲಿ ಕರಗಿರುವ CO2 ನೀರಿನೊಂದಿಗೆ ವರ್ತಿಸಿ ಇಂಗಾಲಾಮ್ಲ/ಕಾರ್ಬಾನಿಕ್‌ ಆಮ್ಲವಾಗಿ ಪರಿವರ್ತನೆ ಹೊಂದಿ ಸಾಗರವನ್ನು ಆಮ್ಲೀಯಗೊಳಿಸುತ್ತದೆ. ಕೈಗಾರಿಕಾ ಯುಗದ ಆರಂಭದಲ್ಲಿದ್ದ ಸಾಗರ ಮೇಲ್ಮೈನ pH ಮೌಲ್ಯ 8.25ರಿಂದ 2004ರ ಹೊತ್ತಿಗೆ 8.14ಕ್ಕಿಳಿದಿದೆ,[೭೩] ಅಲ್ಲದೇ 2100ರ ಹೊತ್ತಿಗೆ ಸಾಗರಗಳು ಇನ್ನಷ್ಟು CO2[೧][೭೪] ಹೀರುವುದರಿಂದ ಮತ್ತೂ 0.14ರಿಂದ 0.5 ಮಾನಕಗಳಷ್ಟು ಇಳಿಕೆಯಾಗಬಹುದೆಂದು ಅಂದಾಜಿಸಲಾಗಿದೆ. ಹಸಿರುಮನೆ ಅನಿಲ ಹೊರಸೂಸುವಿಕೆ ಅಂತಿಮವಾಗಿ ಕಡಿಮೆ[೬] ಯಾದರೂ ಸಾಗರದಲ್ಲಿ ಲೀನವಾದ ಶಾಖ ಮತ್ತು ಇಂಗಾಲದ ಡಯಾಕ್ಸೈಡ್‌ಗಳು ಮತ್ತೆ ಹೊರಸೂಸಲು ಹಲವು ನೂರು ವರ್ಷಗಳು ತೆಗೆದುಕೊಳ್ಳುವವು. ಜೀವಸಂಕುಲ ಮತ್ತು ಪರಿಸರ ವ್ಯವಸ್ಥೆಗಳು pHನ ಪರಿಮಿತ ವ್ಯಾಪ್ತಿಗೆ ಹೊಂದಿಕೊಂಡಿರುವುದರಿಂದ, ಇದು ಆಹಾರ ಜಾಲಗಳಲ್ಲಿ ವ್ಯತ್ಯಯವನ್ನುಂಟು ಮಾಡಿ ಅಳಿವಿಗೆ ಕಾರಣವಾಗುವ ಅಪಾಯವೂ ಇರುತ್ತದೆ.[೭೫] ಭವಿಷ್ಯದ ಹವಾಮಾನ ಪ್ರಕ್ಷೇಪಗಳ ಮೇಲೆ ಆಧಾರಿತವಾಗಿ ಒಂದು ಅಧ್ಯಯನವು ಊಹಿಸುವಂತೆ 1,103 ಮಾದರಿಗಳ 18%ರಿಂದ 35%ರಷ್ಟು ಪ್ರಾಣಿ ಮತ್ತು ಸಸ್ಯ ಜಾತಿಗಳು 2050ರ ಹೊತ್ತಿಗೆ ಅಳಿವಿನಂಚಿಗೆ ಬಂದಿರುತ್ತದೆ.[೭೬] ಆದರೂ, ಕೆಲ ಯಾಂತ್ರಿಕ ಸಿದ್ಧಾಂತದ ಅಧ್ಯಯನಗಳು ಇತ್ತೀಚಿನ ಹವಾಮಾನ ವ್ಯತ್ಯಾಸಗಳಿಂದಾಗಿರುವ ಅನೇಕ ಪ್ರಭೇದ ನಿರ್ಮೂಲನೆಗಳನ್ನು ದಾಖಲಿಸಿವೆ,[೭೭] ಮತ್ತು ಅಧ್ಯಯನವೊಂದರ ಪ್ರಕಾರ ಪ್ರಕ್ಷೇಪಿತ ಅಳಿವಿನ ದರವು ಅನಿಶ್ಚಿತವಾದುದು.[೭೮]

ಟಿಬೆಟ್‌ನ ಪ್ರಸ್ಥಭೂಮಿಯು ವಿಶ್ವದ ಮೂರನೇ ಅತಿದೊಡ್ಡ ಹಿಮ ಸಂಗ್ರಹಾಗಾರವಾಗಿದೆ. ಚೀನಾದ ಪವನಶಾಸ್ತ್ರೀಯ ನಿರ್ವಹಣಾ ಸಮಿತಿಯ ಮಾಜಿ ಮುಖ್ಯಸ್ಥ ಕ್ವಿನ್‌ ದಾಹೆಯವರು, ಇತ್ತೀಚಿನ ಕರಗುವಿಕೆಯ ವೇಗಗತಿ ಮತ್ತು ಹೆಚ್ಚಿದ ಉಷ್ಣಾಂಶಗಳಿಂದಾಗಿ ಕೃಷಿ ಹಾಗೂ ಪ್ರವಾಸೋದ್ಯಮಕ್ಕೆ ಅಲ್ಪ ಸಮಯದಲ್ಲೇ ಅನುಕೂಲವಾಗುತ್ತದೆ ಎಂದರೂ,

"ಚೀನಾದಲ್ಲಿ ಉಳಿದೆಲ್ಲ ಪ್ರದೇಶಗಳಿಗಿಂತ ನಾಲ್ಕು ಪಟ್ಟು ವೇಗದಲ್ಲಿ ತಾಪಮಾನ ಹೆಚ್ಚಾಗುತ್ತಿದೆಯಲ್ಲದೇ ಟಿಬೆಟ್‌ನ ಹಿಮನದಿಗಳು ವಿಶ್ವದ ಇತರೆ ಭಾಗಗಳಿಗಿಂತ ಹೆಚ್ಚಿನ ವೇಗದಲ್ಲಿ ಹಿಂಜರಿಯುತ್ತಿವೆ." "ಇದು ಅಲ್ಪ ಕಾಲಾವಧಿಯಲ್ಲೇ ಸರೋವರಗಳನ್ನು ವಿಸ್ತರಿಸುವಂತೆ ಮಾಡಿ ಪ್ರವಾಹಗಳು ಮತ್ತು ಮಣ್ಣಿನ ಸವಕಳಿಗೆ ಕಾರಣವಾಗುತ್ತದೆ." "ದೀರ್ಘಕಾಲೀನ ಅವಧಿಯಲ್ಲಿ ಹಿಮನದಿಗಳು ಸಿಂಧೂ ಹಾಗೂ ಗಂಗಾ ನದಿಗಳೂ ಸೇರಿದಂತೆ ಏಷ್ಯಾ ನದಿಗಳ ಮೂಲಸೆಲೆಗಳು. "ಅವು ಒಮ್ಮೆ ಕಣ್ಮರೆಯಾದರೆ ಆ ಪ್ರದೇಶಗಳಲ್ಲಿನ ನೀರು ಪೂರೈಕೆಗೆ ಗಂಡಾಂತರ ಕಟ್ಟಿಟ್ಟದ್ದು."[೭೯] ಎಂಬ ತೀವ್ರ ಎಚ್ಚರಿಕೆ ನೀಡಿದರು.

ಆರ್ಥಿಕ[ಬದಲಾಯಿಸಿ]

ವಿಶ್ವಾದ್ಯಂತ ಹವಾಮಾನ ಬದಲಾವಣೆಗಳಿಂದಾಗುವ ಒಟ್ಟಾರೆ ನಿವ್ವಳ ನಷ್ಟವನ್ನು (ನಿಗದಿತ ವರ್ಷಕ್ಕೆ ಗಣಿಸಿದಂತೆ) IPCC ವರದಿ ಮಾಡುತ್ತದೆ. 2005ರಲ್ಲಿ, ಇಂಗಾಲದ ಸರಾಸರಿ ಸಾಮಾಜಿಕ ವೆಚ್ಚವು 100 ಸಮಾನಮನಸ್ಕರ-ಪರಿಶೀಲಿತ ಅಂದಾಜಿನ ಪ್ರಕಾರ CO2,ನ ಪ್ರತಿ ಟನ್ನಿಗೆ US$12 ಆದರೆ $3ರಿಂದ $95/tCO2ರಷ್ಟು ವ್ಯತ್ಯಾಸವಾಗಬಲ್ಲದು. IPCC ಸಂಸ್ಥೆಯು ವೆಚ್ಚದ ಅಂದಾಜನ್ನು ಎಚ್ಚರಿಕೆಯೊಂದಿಗೆ ನೀಡುತ್ತದೆ, "ಒಟ್ಟಾರೆ ವೆಚ್ಚದ ಅಂದಾಜುಗಳು ವಿವಿಧ ವಿಭಾಗಗಳು, ಪ್ರದೇಶಗಳು ಮತ್ತು ನಿವಾಸಿಗಳ ಮೇಲಾಗುವ ಪರಿಣಾಮಗಳ ನಡುವಿನ ವ್ಯತ್ಯಾಸವನ್ನು ಗಮನಾರ್ಹವಾಗಿ ಮರೆ ಮಾಡುವುದಲ್ಲದೇ, ಅನೇಕ ಅಳೆಯಲಾಗದ ಪ್ರಭಾವಗಳನ್ನು ಸೇರಿಸಿಕೊಳ್ಳಲು ಆಗದ ಕಾರಣ ಆಗುವ ನಷ್ಟದ ಕಡಿಮೆ ಅಂದಾಜು ಮಾಡಿರುವ ಸಾಧ್ಯತೆ ಹೆಚ್ಚಿರುತ್ತದೆ ."[೮೦]

ಅತಿ ಹೆಚ್ಚು ಪ್ರಚಾರ ಪಡೆದ ಸಂಭಾವ್ಯ ಆರ್ಥಿಕ ಪರಿಣಾಮಗಳ ಮೇಲಿನ ವರದಿಯೆಂದರೆ ಸರ್‌ ನಿಕೋಲಸ್‌ ಸ್ಟರ್ನ್‌ರಿಂದ ರಚಿತವಾದ ಸ್ಟರ್ನ್‌ ಸಮೀಕ್ಷೆ. ಇದರ ಪ್ರಕಾರ ವಾತಾವರಣದ ವೈಪರೀತ್ಯಗಳು ಜಾಗತಿಕ ದೇಶೀಯ ಸಮಗ್ರ ಉತ್ಪನ್ನವನ್ನು ಒಂದು ಪ್ರತಿಶತದಷ್ಟು ಇಳಿಸುವುದಲ್ಲದೇ, ಅತಿ ಕೆಟ್ಟ ಪರಿಸ್ಥಿತಿಯಲ್ಲಿ ಜಾಗತಿಕ ತಲಾ ಅನುಭೋಗವು 20 ಪ್ರತಿಶತಕ್ಕೆ ಸಮಾನವಾಗಿ ಇಳಿಕೆಯಾಗುಚ ಸಾಧ್ಯತೆ ಇರುತ್ತದೆ.[೮೧] ಸ್ಟರ್ನ್‌ ಸಮೀಕ್ಷೆಗೆ ಮಿಶ್ರ ಪ್ರತಿಕ್ರಿಯೆ ಸಿಕ್ಕಿತ್ತು. ಸಮೀಕ್ಷೆಯ ವಿಧಾನ, ಸಮರ್ಥನೆ ಮತ್ತು ಅಂತಿಮ ತೀರ್ಮಾನಗಳನ್ನು ರಿಚರ್ಡ್ ಟಾಲ್‌, ಗೇರಿ ಯೋಹೆ,[೮೨] ರಾಬರ್ಟ್ ಮೆಂಡೆಲ್‌ಸೋಹ್ನ್[೮೩] ಮತ್ತು ವಿಲಿಯಂ ನಾರ್ಡಾಸ್[೮೪] ರಂತಹಾ ‌ಅನೇಕ ಆರ್ಥಿಕತಜ್ಞರು ಟೀಕಿಸಿದರು. ಸಮೀಕ್ಷೆಯನ್ನು ಸಾಧಾರಣವಾಗಿ ಬೆಂಬಲಿಸಿದ ಆರ್ಥಿಕತಜ್ಞರೆಂದರೆ ಟೆರ್ರಿ ಬಾರ್ಕರ್‌,[೮೫] ವಿಲಿಯಂ ಕ್ಲೈನ್‌,[೮೬] ಮತ್ತು ಫ್ರಾಂಕ್‌ ಅಕರ್‌ಮ್ಯಾನ್.[೮೭] ಬಾರ್ಕರ್‌ರ ಪ್ರಕಾರ, ವಾತಾವರಣದ ಬದಲಾವಣೆಯನ್ನು ನಿವಾರಣೆ ಮಾಡದೇ ಇರುವುದರಿಂದಾಗುವ ಅಪಾಯಕ್ಕೆ ಹೋಲಿಸಿದರೆ, ನಿವಾರಣೆಗೆ ತಗಲುವ ವೆಚ್ಚಗಳು ‘ನಗಣ್ಯ’.[೮೮]

ಸಂಯುಕ್ತ ರಾಷ್ಟ್ರ ಸಂಘದ ಪರಿಸರ ಕಾರ್ಯಕ್ರಮಸೂಚಿಯ(UNEP) ಪ್ರಕಾರ, ಬ್ಯಾಂಕ್‌ಗಳು, ಕೃಷಿ, ಸಾರಿಗೆ, ಮತ್ತಿತರ ವಿಚಾರಗಳಿಗೆ ಸಂಬಂಧಿಸಿದಂತೆ ಆರ್ಥಿಕ ವಲಯಗಳು ತೊಂದರೆಗಳನ್ನು ಎದುರಿಸಬೇಕಾಗಿಬರುತ್ತದೆ.[೮೯] ವಿಶೇಷವಾಗಿ ಕೃಷಿ ಆಧಾರಿತ ಅಭಿವೃದ್ಧಿಗೊಳ್ಳುತ್ತಿರುವ ರಾಷ್ಟ್ರಗಳು ಜಾಗತಿಕ ಉಷ್ಣತೆ ಏರಿಕೆಯಿಂದ ಅಪಾಯಕ್ಕೀಡಾಗುತ್ತವೆ.[೯೦]

ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆಗೆ ಪ್ರತಿಕ್ರಿಯೆಗಳು[ಬದಲಾಯಿಸಿ]

ವಾತಾವರಣ ವಿಜ್ಞಾನಿಗಳ ನಡುವೆ ವಿಶಾಲ ಅರ್ಥದಲ್ಲಿರುವ ಒಡಂಬಡಿಕೆಯೆಂದರೆ ಜಾಗತಿಕ ತಾಪಮಾನ ಹೆಚ್ಚುವಿಕೆಯ ಮುಂದುವರೆಯುವಿಕೆಯು ಕೆಲ ರಾಷ್ಟ್ರಗಳು, ಆಡಳಿತಗಳು, ಸಂಘಸಂಸ್ಥೆಗಳು ಮತ್ತು ವ್ಯಕ್ತಿಗಳನ್ನು ಪ್ರತಿಕ್ರಿಯೆಗಳನ್ನು ಕಾರ್ಯಗತಗೊಳಿಸುವ ಹಾಗೆ ಪ್ರಚೋದಿಸಿದೆ. ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆಗೆ ಹೊರಹೊಮ್ಮಿದ ಪ್ರತಿಕ್ರಿಯೆಗಳನ್ನು ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆಯ ಮೂಲಕಾರಣ ಮತ್ತು ಪರಿಣಾಮಗಳ ನಿವಾರಣೆ, ಬದಲಾಗುತ್ತಿರುವ ಜಾಗತಿಕ ಪರಿಸರಕ್ಕೆ ಹೊಂದಿಕೊಳ್ಳುವಿಕೆ ಮತ್ತು ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆಯನ್ನು ನಿರರ್ಥಕಗೊಳಿಸಲು ಭೂ-ವಾಸ್ತುಶಿಲ್ಪ ಬಳಕೆ.

ನಿವಾರಣೆ[ಬದಲಾಯಿಸಿ]

ಇಂಗಾಲದ ಹೀರಿಕೊಳ್ಳುವಿಕೆ ಮತ್ತು ಸಂಗ್ರಹವು (CCS) ನಿವಾರಣೆಯ ಒಂದು ಮಾರ್ಗ ಅಗೆದು ತೆಗೆವ ಇಂಧನ ಕೇಂದ್ರದಿಂದ ಹೊರಸೂಸುವಿಕೆಯನ್ನು ಪ್ರತ್ಯೇಕವಾಗಿಸುವುದು ಇಲ್ಲವೇ ಹೈಡ್ರೋಜನ್‌ ಉತ್ಪಾದನಾ ಪ್ರಕ್ರಿಯೆಯಲ್ಲಿ ತೆಗೆದುಹಾಕಬಹುದು. ಸಸ್ಯಗಳ ಮೇಲೆ ಇದನ್ನು ಅನ್ವಯಿಸಿದಾಗ, ಇದನ್ನು ಇಂಗಾಲದ ಹೀರಿಕೊಳ್ಳುವಿಕೆ ಮತ್ತು ಸಂಗ್ರಹ ಮಾಡುವ ಜೈವಿಕ-ಶಕ್ತಿ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.

ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆಯ ನಿವಾರಣೆಯನ್ನು ಮಾನವ ಜನ್ಯ ಹಸಿರುಮನೆ ಅನಿಲ ಬಿಡುಗಡೆಯ ದರವನ್ನು ಕಡಿಮೆಗೊಳಿಸುವುದರ ಮೂಲಕ ಸಾಧಿಸಬಹುದು. ಮಾದರಿಗಳ ಪ್ರಕಾರ ನಿವಾರಣೋಪಾಯಗಳು ಆದಷ್ಟು ಬೇಗ ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆಯನ್ನು ಕಡಿಮೆಗೊಳಿಸಿದರೂ, ಗಮನಾರ್ಹ ಪ್ರಮಾಣದಲ್ಲಿ ತಾಪಮಾನ ಕಡಿಮೆಯಾಗಲು ಅನೇಕ ಶತಮಾನಗಳೇ ಬೇಕು.[೯೧] ಹಸಿರುಮನೆ ಅನಿಲ ಹೊರಸೂಸುವಿಕೆಯನ್ನು ಕಡಿಮೆ ಮಾಡುವುದರ ಮೇಲಿನ ವಿಶ್ವದ ಪ್ರಮುಖ ಅಂತರರಾಷ್ಟ್ರೀಯ ಒಪ್ಪಂದ ಮತ್ತು ಕೈಗೊಂಡ ತೀರ್ಮಾನಕ್ಕೆ 1997ರಲ್ಲಿ ಸಂಧಾನದ ಮೂಲಕ UNFCCC ಮಾಡಿದ ತಿದ್ದುಪಡಿಯೇ ಕ್ಯೋಟೋ ನಿಯಮಾವಳಿಗಳು. ಈ ನಿಯಮಾವಳಿಗಳನ್ನು ಈಗ 160ಕ್ಕೂ ಹೆಚ್ಚಿನ ಸಂಖ್ಯೆಯ ರಾಷ್ಟ್ರಗಳು ಪಾಲಿಸುತ್ತವೆಯಲ್ಲದೇ, ಇದು ಪ್ರತಿಶತ 55ಕ್ಕೂ ಹೆಚ್ಚಿನ ಜಾಗತಿಕ ಹಸಿರುಮನೆ ಅನಿಲ ಹೊರಸೂಸುವಿಕೆಯನ್ನು ತಡೆಹಿಡಿದಿದೆ.[೯೨] ಜೂನ್‌ 2009ರ ಅವಧಿಗೆ ಸಂಬಂಧಿಸಿದ ಹಾಗೆ ಕೇವಲ ಯುನೈಟೆಡ್‌ ಸ್ಟೇಟ್ಸ್‌, ಐತಿಹಾಸಿಕವಾಗಿ ಹಸಿರುಮನೆ ಅನಿಲಗಳ ವಿಶ್ವದ ಅತಿಹೆಚ್ಚಿನ ಪ್ರಮಾಣದ ಉತ್ಪಾದಕ ಮಾತ್ರವೇ ಅನುಮೋದಿಸದೇ ಇರುವುದು. ಈ ಒಪ್ಪಂದದ ಅವಧಿಯು 2012ರಲ್ಲಿ ಮುಕ್ತಾಯಗೊಳ್ಳುತ್ತದೆ. ಮೇ 2007ರಲ್ಲಿ ಪ್ರಸಕ್ತ ಒಪ್ಪಂದವನ್ನು ಮುಂದುವರೆಸುವ ಭಾವೀ ಒಪ್ಪಂದದ ಬಗ್ಗೆ ಅಂತರರಾಷ್ಟ್ರೀಯ ಮಾತುಕತೆಗಳು ಆರಂಭಗೊಂಡಿವೆ.[೯೩][೯೪] ಡಿಸೆಂಬರ್‌ 2009ರಲ್ಲಿ ಕೋಪೆನ್‌ಹೇಗನ್‌ನಲ್ಲಿ ನಡೆಯಲಿರುವ UN ಸಭೆಯ ಬಗೆಗಿನ ಸಭಾಪೂರ್ವ ಮಾತುಕತೆಗಳು ಈಗ ವೇಗ ಪಡೆದುಕೊಂಡಿವೆ.[೯೪]

ಅನೇಕ ಪರಿಸರ ಸಂಬಂಧಿ ಗುಂಪುಗಳು ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆಯ ವಿರುದ್ಧ ವೈಯಕ್ತಿಕ ಚಟುವಟಿಕೆ ಹಾಗೂ ಸಾಮುದಾಯಿಕ ಮತ್ತು ಪ್ರಾದೇಶಿಕ ಚಟುವಟಿಕೆಗಳನ್ನು ಬೆಂಬಲಿಸುತ್ತವೆ. ಇನ್ನಿತರ ಸಂಸ್ಥೆಗಳು CO2 ಹೊರಸೂಸುವಿಕೆ[೯೫][೯೬] ಮತ್ತು ಅಗೆದು ತೆಗೆದ ಇಂಧನ ಉತ್ಪಾದನೆಗೆ ನೇರ ಸಂಬಂಧ ಕಲ್ಪಿಸಿ ವಿಶ್ವಾದ್ಯಂತದ ಅಗೆದು ತೆಗೆದ ಇಂಧನ ಉತ್ಪಾದನೆಯ ಪ್ರಮಾಣವನ್ನು ನಿಯಂತ್ರಿಸುವಂತೆ ಸಲಹೆ ನೀಡಿವೆ.

ಶಕ್ತಿ ದಕ್ಷತೆಯನ್ನು ಉತ್ತಮೀಕರಿಸಲು ಪ್ರಯತ್ನಗಳು ಹಾಗೂ ಬದಲೀ ಇಂಧನಗಳ ಕುರಿತು ಅಲ್ಪ ಪ್ರಯತ್ನಗಳೂ ಸೇರಿದಂತೆ ವಾತಾವರಣ ಬದಲಾವಣೆಯ ಕುರಿತು ಉದ್ದಿಮೆಗಳ ಚಟುವಟಿಕೆಗಳೂ ನಡೆದಿವೆ. ಜನವರಿ 2005ರಲ್ಲಿ ಐರೋಪ್ಯ ಒಕ್ಕೂಟವು ತನ್ನ ಐರೋಪ್ಯ ಒಕ್ಕೂಟದ ಹೊರಸೂಸುವಿಕೆ ವ್ಯವಹಾರ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಚಯಿಸಿ ಸರಕಾರದ ಸಹಾಯದೊಂದಿಗೆ ಕಂಪೆನಿಗಳು ತಮ್ಮ ಹೊರಸೂಸುವಿಕೆಯನ್ನು ನಿಯಂತ್ರಿಸಿಕೊಳ್ಳಲು ಇಲ್ಲವೇ ತಮ್ಮ ಮಿತಿಗಿಂತ ಕಡಿಮೆ ಪ್ರಮಾಣದಲ್ಲಿರುವ ಇತರ ಸಂಸ್ಥೆಗಳಿಂದ ಜಮಾಕಂತನ್ನು ಕೊಂಡುಕೊಂಡು ತಮಗೆ ನಿಗದಿಪಡಿಸಿದ ಮಿತಿಯನ್ನು ಹೆಚ್ಚಿಸಿಕೊಳ್ಳಲು ಪರವಾನಗಿಯನ್ನು ನೀಡುತ್ತದೆ. ಆಸ್ಟ್ರೇಲಿಯಾ ತನ್ನ ಇಂಗಾಲ ಮಾಲಿನ್ಯ ನಿಯಂತ್ರಣ ವ್ಯವಸ್ಥೆಯನ್ನು 2008ರಲ್ಲಿ ಘೋಷಿಸಿತು. ಯುನೈಟೆಡ್‌ ಸ್ಟೇಟ್ಸ್‌ ಅಧ್ಯಕ್ಷ ಬರಾಕ್‌ ಒಬಾಮರವರು ಮಿತವ್ಯಯ-ವ್ಯಾಪಿ ನಿಯಂತ್ರಣ ಮತ್ತು ವ್ಯಾಪಾರ ವ್ಯವಸ್ಥೆಯನ್ನು ಆರಂಭಿಸುವ ಯೋಜನೆಯನ್ನು ಘೋಷಿಸಿದ್ದಾರೆ.[೯೭]

IPCCಯ ವರ್ಕಿಂಗ್‌ ಗ್ರೂಪ್‌ III ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆಯ ನಿವಾರಣೆ ಬಗ್ಗೆ ಹಾಗೂ ವಿವಿಧ ಮಾರ್ಗಗಳ ವೆಚ್ಚ ಹಾಗೂ ಅನುಕೂಲಗಳ ಬಗ್ಗೆ ವರದಿ ತಯಾರಿಸುವ ಜವಾಬ್ದಾರಿ ಹೊಂದಿದೆ. 2007ರ IPCC ನಾಲ್ಕನೇ ನಿರ್ಧಾರಕ ವರದಿಯ ಪ್ರಕಾರ ಯಾವುದೇ ಒಂದು ತಂತ್ರಜ್ಞಾನ ಇಲ್ಲವೇ ವಲಯವು ಪೂರ್ಣವಾಗಿ ಭವಿಷ್ಯದ ತಾಪಮಾನ ಏರಿಕೆ ನಿವಾರಣೆಗೆ ಬಾಧ್ಯತೆ ವಹಿಸಲು ಅಸಾಧ್ಯ. ಶಕ್ತಿ ಸರಬರಾಜು, ಸಾರಿಗೆ, ಉದ್ಯಮ, ಮತ್ತು ಕೃಷಿಗಳೂ ಸೇರಿದಂತೆ, ಅನೇಕ ವಲಯಗಳಲ್ಲಿ ಪ್ರಮುಖ ವಿಧಾನಗಳು ಮತ್ತು ತಾಂತ್ರಿಕತೆಗಳ ಮೂಲಕ ಜಾಗತಿಕ ಹೊರಸೂಸುವಿಕೆಯನ್ನು ಕಾರ್ಯಗತಗೊಳಿಸಲು ಸಾಧ್ಯ. ಅವರ ಅಂದಾಜಿನ ಪ್ರಕಾರ ಇಂಗಾಲದ ಡಯಾಕ್ಸೈಡ್‌ನ ಪ್ರಮಾಣವನ್ನು 2030ರೊಳಗೆ 445ರಿಂದ 710 ppmರಷ್ಟಕ್ಕೆ ಸ್ಥಿರಗೊಳಿಸಿದರೆ ಜಾಗತಿಕ ಸಮಗ್ರ ರಾಷ್ಟ್ರೀಯ ಉತ್ಪನ್ನದಲ್ಲಿ ಪ್ರತಿಶತ 0.6 ಏರಿಕೆಯಿಂದ ಪ್ರತಿಶತ ಮೂರರಷ್ಟು ಇಳಿಕೆಯನ್ನು ಸಾಧಿಸಬಹುದು.[೯೮]

ಹೊಂದಾಣಿಕೆ[ಬದಲಾಯಿಸಿ]

ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆಯೊಂದಿಗೆ ಹೊಂದಿಕೊಳ್ಳಲು ಅನೇಕ ವ್ಯಾಪಕ ಕ್ರಮಗಳನ್ನು ಸೂಚಿಸಲಾಗಿದೆ. ಈ ಕ್ರಮಗಳು ವಾತಾನುಕೂಲಿ ಉಪಕರಣಗಳನ್ನು ಸ್ಥಾಪಿಸುವಂತಹಾ ಅಲ್ಪ ಕ್ರಮದಿಂದ ಹಿಡಿದು, ಸಮುದ್ರಮಟ್ಟದ ಏರಿಕೆಯಿಂದ ತೊಂದರೆಯಾಗಬಲ್ಲ ನಿರ್ಮಾಣಗಳನ್ನು ಸ್ಥಗಿತ ಇಲ್ಲವೇ ಸ್ಥಳಾಂತರಿಸುವಂತಹಾ ಪ್ರಮುಖ ಆಧಾರರಚನೆ ಯೋಜನೆಗಳವರೆಗೆ ವ್ಯಾಪಿಸಿದೆ.

ನೀರಿನ ಸಂರಕ್ಷಣೆ,[೯೯] ನೀರಿನ ಪಡಿತರ ವ್ಯವಸ್ಥೆ, ಹೊಂದಾಣಿಸಿದ ಕೃಷಿ ವಿಧಾನಗಳು,[೧೦೦] ಪ್ರವಾಹ ನಿರೋಧಕ ನಿರ್ಮಾಣಗಳು,[೧೦೧] ಮಂಗಳದ ಮೇಲೆ ವಸಾಹತು ಸ್ಥಾಪಿಸುವಿಕೆ,[೧೦೨] ಆರೋಗ್ಯ ವ್ಯವಸ್ಥೆಯಲ್ಲಿನ ಬದಲಾವಣೆಗಳು,[೧೦೩] ಮತ್ತು ಅಳಿವಿನಂಚಿನಲ್ಲಿರುವ ಪ್ರಬೇಧ[೧೦೪] ಗಳನ್ನು ಉಳಿಸಲು ಹಸ್ತಕ್ಷೇಪ ಮಾಡುವಂತಹಾ ವಿವಿಧ ಕ್ರಮಗಳನ್ನು ಸೂಚಿಸಲಾಗಿದೆ. ಇನ್‌ಸ್ಟಿಟ್ಯೂಟ್‌ ಆಫ್‌ ಮೆಕ್ಯಾನಿಕಲ್‌ ಎಂಜಿನೀರ್ಸ್[೧೦೫] ಸಂಸ್ಥೆಯು ಆಧಾರರಚನೆ ಯೋಜನೆಗಳಲ್ಲಿ ಹೊಂದಾಣಿಕೆ ಮಾಡಿಕೊಳ್ಳುವುದರ ಲಭ್ಯತೆಗಳ ಬಗ್ಗೆ ವಿಸ್ತೃತ ಅಧ್ಯಯನವನ್ನು ಪ್ರಕಟಿಸಿದೆ.

ಭೂ-ವಾಸ್ತುಶಿಲ್ಪ[ಬದಲಾಯಿಸಿ]

ಭೂವಾಸ್ತುಶಿಲ್ಪವೆಂದರೆ ಭೂಮಿಯ ನೈಸರ್ಗಿಕ ಪರಿಸರವನ್ನು ಬೃಹತ್‌ ಪ್ರಮಾಣದಲ್ಲಿ ಉದ್ದೇಶಪೂರ್ವಕವಾಗಿ ಮಾನವ ಅಗತ್ಯಗಳಿಗಾಗಿ ಮಾರ್ಪಡಿಸುವುದಾಗಿದೆ.[೧೦೬] ಉದಾಹರಣೆಯೆಂದರೆ ಗಾಳಿಯಲ್ಲಿನ ಇಂಗಾಲದ ಡಯಾಕ್ಸೈಡ್‌ ಹೀರಿಕೊಳ್ಳುವಿಕೆ[೧೦೭] ಯಂತಹಾ ಇಂಗಾಲ ಪ್ರತ್ಯೇಕತಾ ತಾಂತ್ರಿಕತೆಗಳ ಮೂಲಕ ವಾತಾವರಣದಿಂದ ಹಸಿರುಮನೆ ಅನಿಲಗಳನ್ನು ಹೊರಹಾಕುವ ಹಸಿರುಮನೆ ಅನಿಲ ನಿವಾರಣೋಪಾಯ. ವಾಯುಮಂಡಲದಲ್ಲಿ ಸಲ್ಫರ್‌ ವಾಯುಕಲಿಲಗಳನ್ನು ಸೇರಿಸುವಿಕೆಯ ಮೂಲಕ ಬಿಸಿಲೂಡಿಕೆಯನ್ನು ಕಡಿಮೆ ಮಾಡಿ ಸೌರ ವಿಕಿರಣಗಳ ನಿರ್ವಹಣೆ.[೧೦೮] ಇದುವರೆಗೂ ಯಾವುದೇ ಭಾರಿ ಪ್ರಮಾಣದ ಭೂ-ವಾಸ್ತುಶಿಲ್ಪದ ಯೋಜನೆಗಳನ್ನು ಕೈಗೊಳ್ಳಲಾಗಿಲ್ಲ.

ಚರ್ಚೆಗಳು ಮತ್ತು ಸಂದೇಹವಾದಗಳು[ಬದಲಾಯಿಸಿ]

ಟೆಂಪ್ಲೇಟು:Double image stack

ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆ ಸಂಬಂಧಿಸಿದ ವೈಜ್ಞಾನಿಕ ಸಂಶೋಧನೆಗಳ ಹೆಚ್ಚಿದ ಜನಪ್ರಿಯತೆಯಿಂದಾಗಿ ರಾಜಕೀಯ ಮತ್ತು ಆರ್ಥಿಕ ಚರ್ಚೆಗಳು ಆರಂಭವಾಗಿವೆ.[೧೦೯] ನಿರ್ದಿಷ್ಟವಾಗಿ ಆಫ್ರಿಕಾ ಸೇರಿದಂತೆ ಬಡ ರಾಷ್ಟ್ರಗಳು ಅಭಿವೃದ್ಧಿ ಹೊಂದಿದ ರಾಷ್ಟ್ರ[೧೧೦] ಗಳಿಗೆ ಹೋಲಿಸಿದರೆ ಅವುಗಳ ಹೊರಸೂಸುವಿಕೆ ಅಲ್ಪವೇ ಆದರೂ ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆಯ ಪ್ರಕ್ಷೇಪಿತ ಪರಿಣಾಮಗಳಿಂದ ಹೆಚ್ಚು ಅಪಾಯ ಹೊಂದುವ ಸಾಧ್ಯತೆ ಇದೆ. ಕ್ಯೋಟೋ ನಿಯಮಾವಳಿಗಳಿಗೆ U.S.ನ ಅಸಮ್ಮತಿಯ ಕಾರಣದಿಂದ ಮತ್ತು ಆಸ್ಟ್ರೇಲಿಯಾ[೧೧೧] ದ ಟೀಕೆಗಳನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಲು ಅಭಿವೃದ್ಧಿ ಹೊಂದುತ್ತಿರುವ ರಾಷ್ಟ್ರಗಳಿಗೆ ಅವುಗಳಿಂದ ವಿನಾಯಿತಿ ನೀಡಲಾಗಿದೆ. ಮತ್ತೊಂದು ವಿವಾದಾತ್ಮಕ ವಿಚಾರವೆಂದರೆ ಅಭಿವೃದ್ಧಿ ಹೊಂದುತ್ತಿರುವ ಆರ್ಥಿಕತೆಗಳಾದ ಭಾರತ ಮತ್ತು ಚೀನಾಗಳು ಎಷ್ಟರ ಮಟ್ಟಿಗೆ ತಮ್ಮ ಹೊರಸೂಸುವಿಕೆಯನ್ನು ನಿಯಂತ್ರಿಸಿಕೊಳ್ಳಬೇಕು ಎಂಬುದು.[೧೧೨] U.S.ನ ವಾದವೆಂದರೆ ಹೊರಸೂಸುವಿಕೆಯನ್ನು ನಿಯಂತ್ರಿಸುವ ವೆಚ್ಚವನ್ನು ತಾನು ಭರಿಸಬೇಕೆಂದರೆ ಚೀನಾದ ಸಮಗ್ರ ರಾಷ್ಟ್ರೀಯ CO2 ಹೊರಸೂಸುವಿಕೆಯು U.S.[೧೧೩][೧೧೪][೧೧೫] ನದನ್ನು ಮೀರಿಸುತ್ತಿರುವದರಿಂದ ಚೀನಾ[೧೧೬][೧೧೭] ಸಹಾ ಆ ಕಾರ್ಯ ಕೈಗೊಳ್ಳಬೇಕು ಎಂಬುದು. ಚೀನಾ ತನ್ನ ಹೊರಸೂಸುವಿಕೆ ಇಳಿಸುವಿಕೆ ಅಷ್ಟು ಬದ್ಧವಾಗಿರಬೇಕಿಲ್ಲ, ಏಕೆಂದರೆ ತಲಾ ಜವಾಬ್ದಾರಿ ಹಾಗೂ ತಲಾ ಹೊರಸೂಸುವಿಕೆಗಳು U.S.ಗಿಂತ ಕಡಿಮೆ ಇದೆ ಎಂದು ವಾದಿಸುತ್ತಿದೆ.[೧೧೮] ಭಾರತವೂ ಕೂಡ, ಅದರಿಂದ ಹೊರಗುಳಿದು, ಅದೇ ಮಾದರಿಯ ವಾದವನ್ನು ಮುಂದಿಡುತ್ತಿದೆ.[೧೧೯]

2007-2008ರ ಸಾಲಿನಲ್ಲಿ ಗ್ಯಾಲಪ್‌ ಜನಮತ ಸಂಗ್ರಹಣೆಯು 127 ರಾಷ್ಟ್ರಗಳಲ್ಲಿ ಸಮೀಕ್ಷೆ ನಡೆಸಿದೆ. ವಿಶ್ವದ ಮೂರನೇ ಒಂದು ಭಾಗದಷ್ಟು ಜನರಿಗೆ ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆಯ ಬಗ್ಗೆ ಅರಿವೇ ಇಲ್ಲ, ಅಭಿವೃದ್ಧಿ ಹೊಂದುತ್ತಿರುವ ರಾಷ್ಟ್ರಗಳು ಅಭಿವೃದ್ಧಿ ಹೊಂದಿದ ರಾಷ್ಟ್ರಗಳಿಗಿಂತ ಕಡಿಮೆ ಅರಿವನ್ನು ಹೊಂದಿದ್ದಾರೆ, ಅದರಲ್ಲೂ ಆಫ್ರಿಕಾದಲ್ಲಿ ಅತಿ ಕಡಿಮೆ ಜನ ಈ ಬಗ್ಗೆ ಅರಿವನ್ನು ಹೊಂದಿದ್ದಾರೆ. ಆದರೆ ಕೇವಲ ಈ ಬಗೆಗಿನ ಅರಿವು ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆಗೆ ಪ್ರಮುಖ ಕಾರಣ ಮಾನವ ಚಟುವಟಿಕೆ ಎಂಬ ಅಭಿಪ್ರಾಯಕ್ಕೆ ಪೂರಕವಾಗಿಲ್ಲ. ಈ ಬಗ್ಗೆ ಅರಿವನ್ನು ಹೊಂದಿರುವ ರಾಷ್ಟ್ರಗಳಲ್ಲಿ ಲ್ಯಾಟಿನ್‌ ಅಮೇರಿಕಾವು ತಾಪಮಾನ ಏರಿಕೆಗೆ ಮೂಲಕಾರಣ ಮಾನವ ಚಟುವಟಿಕೆಗಳು ಎಂದು ನಂಬಿರುವ ರಾಷ್ಟ್ರಗಳ ಮುಂಚೂಣಿಯಲ್ಲಿದ್ದರೆ, ಆಫ್ರಿಕಾ, ಏಷ್ಯಾದ ಕೆಲ ಭಾಗಗಳು, ಮಧ್ಯಪ್ರಾಚ್ಯ ಮತ್ತು ಹಳೆಯ ಸೋವಿಯತ್‌ ಒಕ್ಕೂಟದ ಕೆಲ ರಾಷ್ಟ್ರಗಳು ಅದರ ವಿರೋಧದ ಮುಂಚೂಣಿಯಲ್ಲಿವೆ.[೧೨೦] ಪಾಶ್ಚಿಮಾತ್ಯ ವಿಶ್ವದಲ್ಲಿ ಇದರ ಬಗೆಗಿನ ಪರಿಕಲ್ಪನೆ ಹಾಗೂ ತತ್ಸಂಬಂಧಿ ಪ್ರತಿಕ್ರಿಯೆಗಳು ವಿವಾದಾತ್ಮಕವಾಗಿದೆ. ಕಾರ್ಡಿಫ್‌ ವಿಶ್ವವಿದ್ಯಾಲಯದ ನಿಕ್‌ ಪಿಡ್ಜನ್‌ ಎಂಬಾತ “ಅಟ್ಲಾಂಟಿಕ್‌ ಸಾಗರದ ಪ್ರತಿ ಬದಿಯಲ್ಲೂ ವಿವಿಧ ಹಂತದ ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆಯ ವಿರುದ್ಧದ ಕೆಲಸಗಳು ನಡೆಯುತ್ತಿವೆ ಎಂದು ಫಲಿತಾಂಶಗಳು ತೋರುತ್ತಿವೆ" ಎಂದರೆ, ಯೂರೋಪ್‌ ಅವು ಉಚಿತ ಪ್ರತಿಕ್ರಿಯೆಗಳೋ ಅಲ್ಲವೋ ಎಂದು ವಾದಿಸಿದರೆ, ಯುನೈಟೆಡ್‌ ಸ್ಟೇಟ್ಸ್‌ ವಾತಾವರಣ ಬದಲಾಗುತ್ತಿದೆ ಎಂಬುದನ್ನೇ ಅಲ್ಲಗಳೆಯುತ್ತಿದೆ.[೧೨೧]

ಔದ್ಯಮಿಕ ಹಸಿರುಮನೆ ಅನಿಲಗಳ ಹೊರಸೂಸುವಿಕೆಯನ್ನು ನಿಯಂತ್ರಿಸುವುದರಿಂದ, ಆಗುವ ಅನುಕೂಲಗಳು ನಿಯಂತ್ರಣವಿಲ್ಲದೇ ಇದ್ದರೆ ಆಗುವ ವೆಚ್ಚಕ್ಕಿಂತ ಹೆಚ್ಚು ಎಂಬುದರ ಬಗ್ಗೆ ಚರ್ಚೆಗಳಲ್ಲಿ ನಿಯಂತ್ರಣದ ಪರವೇ ವಾದ ಮೇಲುಗೈಯಾಗುತ್ತಿದೆ.[೯೮] ಆಧಾರರಚನೆಗಳ ನಿರ್ಮಾಣ[೧೨೨][೧೨೩] ದ ಸಮಯದಲ್ಲಿ ಹೊರಸೂಸುವಿಕೆಯನ್ನು ಕಡಿಮೆ ಮಾಡಲು ಆರ್ಥಿಕ ಉತ್ತೇಜಕಗಳೊಂದಿಗೆ, ಬದಲಿ ಹಾಗೂ ಪುನರುತ್ಪಾದಿಸಬಲ್ಲ ಇಂಧನಗಳ ಬಳಕೆಯನ್ನು ಉತ್ತೇಜಿಸಲಾಗುತ್ತಿದೆ. ಉದ್ಯಮ-ಕೇಂದ್ರಿತ ಸಂಸ್ಥೆಗಳಾದ ಕಾಂಪೆಟೆಟಿವ್‌ ಎಂಟರ್‌ಪ್ರೈಸ್‌ ಇನ್‌ಸ್ಟಿಟ್ಯೂಟ್‌, ಕನ್ಸರ್ವೇಟಿವ್‌ ಕಮೆಂಟೇಟರ್ಸ್‌ ಮತ್ತು ಎಕ್ಸಾನ್‌ಮೊಬಿಲ್‌ನಂತಹಾ‌ ಕಂಪೆನಿಗಳು IPCCಯ ವಾತಾವರಣ ಬದಲಾವಣೆ ಸಂದರ್ಭಗಳ ಚರ್ಚೆಯನ್ನು ಹಗುರವಾಗಿ ತೆಗೆದುಕೊಂಡುದಲ್ಲದೇ ವೈಜ್ಞಾನಿಕ ಅಭಿಪ್ರಾಯಗಳನ್ನು ವಿರೋಧಿಸುವ ಇತರೆ ವಿಜ್ಞಾನಿಗಳಿಗೆ ಧನಸಹಾಯ ನೀಡಿ ಪೂರ್ಣ ಪ್ರಮಾಣದ ನಿಯಂತ್ರಣಕ್ಕೆ ಆಗುವ ವೆಚ್ಚ[೧೨೪][೧೨೫][೧೨೬][೧೨೭] ದ ಬಗ್ಗೆ ತಮ್ಮದೇ ಆದ ಪ್ರಕ್ಷೇಪಗಳನ್ನು ನೀಡಿದವು. ಪರಿಸರ ಸಂಬಂಧಿ ಸಂಸ್ಥೆಗಳು ಮತ್ತು ಸಾರ್ವಜನಿಕ ವ್ಯಕ್ತಿಗಳು ಪ್ರಸಕ್ತ ವಾತಾವರಣದಲ್ಲಿನ ಬದಲಾವಣೆಗಳು ಮತ್ತು ಅವುಗಳಿಂದಾಗುವ ಅಪಾಯಗಳನ್ನು ಒತ್ತಿಹೇಳುತ್ತಾ ಆಧಾರರಚನಾ ಯೋಜನೆಗಳಲ್ಲಿ ಹೊರಸೂಸುವಿಕೆ ಕಡಿಮೆ ಮಾಡುವಂತಹಾ ಹೊಂದಾಣಿಕೆಗಳನ್ನು ಮಾಡಿಕೊಳ್ಳುವುದನ್ನು ಪ್ರೋತ್ಸಾಹಿಸುತ್ತಿದ್ದಾರೆ.[೧೨೮] ಕೆಲ ಅಗೆದು ತೆಗೆವ ಇಂಧನ ಕಂಪೆನಿಗಳು ಇತ್ತೀಚಿನ ವರ್ಷಗಳಲ್ಲಿ ತಮ್ಮ ಹಿಂದಿನ ಸಾಮರ್ಥ್ಯದಷ್ಟನ್ನು ಮಾತ್ರ ಉತ್ಪಾದಿಸುವುದು[೧೨೯] ಇಲ್ಲವೇ ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆಯನ್ನು ನಿಯಂತ್ರಿಸುವ ಎಚ್ಚರಿಕೆಗಳನ್ನು ಕೈಗೊಳ್ಳುವುದು ಮಾಡುತ್ತಿವೆ.[೧೩೦]

ವೈಜ್ಞಾನಿಕ ಅಥವಾ ರಾಜಕೀಯ ಸಮುದಾಯಗಳಲ್ಲಿನ ಕೆಲ ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆ ಸಂದೇಹವಾದಿಗಳು ಎಲ್ಲಾ ನಿರ್ಣಯಗಳನ್ನು, ಇಲ್ಲವೇ ಕೆಲ ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆಗೆ ಸಂಬಂಧಿಸಿದ ವೈಜ್ಞಾನಿಕ ನಿರ್ಣಯಗಳನ್ನು ಎಂದರೆ ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆಯು ನಿಜಕ್ಕೂ ಆಗುತ್ತಿದೆಯೇ, ನಿಜಕ್ಕೂ ಮಾನವ ಚಟುವಟಿಕೆಯೇ ಅದಕ್ಕೆ ಕಾರಣವೇ, ಅಷ್ಟೇ ಅಲ್ಲದೇ ಈಗ ಆರೋಪಿಸುತ್ತಿರುವ ಮಟ್ಟಿಗೆ ನಿಜಕ್ಕೂ ಅದರಿಂದ ಅಷ್ಟರಮಟ್ಟಿಗೆ ಅಪಾಯವಿದೆಯೇ ಎಂಬುದರ ಬಗ್ಗೆ ವಿರೋಧಗಳನ್ನು ಎತ್ತುತ್ತಿದ್ದಾರೆ. ಪ್ರಮುಖ ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆ ಸಂದೇಹವಾದಿಗಳೆಂದರೆ ರಿಚರ್ಡ್‌ ಲಿಂಡ್‌ಜೆನ್‌, ಫ್ರೆಡ್‌ ಸಿಂಗರ್‌, ಪ್ಯಾಟ್ರಿಕ್‌ ಮೈಕೆಲ್ಸ್‌, ಜಾನ್‌ ಕ್ರಿಸ್ಟಿ ಮತ್ತು ರಾಬರ್ಟ್‌ ಬಾಲಿಂಗ್‌.[೧೩೧][೧೩೨][೧೩೩]

ವಿವರಗಳಿಗಾಗಿ ನೋಡಿ[ಬದಲಾಯಿಸಿ]

ಟಿಪ್ಪಣಿಗಳು[ಬದಲಾಯಿಸಿ]

  1. ^ Increase is for years 1905 to 2005. Global surface temperature is defined in the IPCC Fourth Assessment Report as the average of near-surface air temperature over land and sea surface temperature. These error bounds are constructed with a 90% uncertainty interval.
  2. ^ The 2001 joint statement was signed by the national academies of science of Australia, Belgium, Brazil, Canada, the Caribbean, China, France, Germany, India, Indonesia, Ireland, Italy, Malaysia, New Zealand, Sweden, and the UK. The 2005 statement added Japan, Russia, and the U.S. The 2007 statement added Mexico and South Africa. The Network of African Science Academies, and the Polish Academy of Sciences have issued separate statements. Professional scientific societies include American Astronomical Society, American Chemical Society, American Geophysical Union, American Institute of Physics, American Meteorological Society, American Physical Society, American Quaternary Association, Australian Meteorological and Oceanographic Society, Canadian Foundation for Climate and Atmospheric Sciences, Canadian Meteorological and Oceanographic Society, European Academy of Sciences and Arts, European Geosciences Union, European Science Foundation, Geological Society of America, Geological Society of Australia, Geological Society of London-Stratigraphy Commission, InterAcademy Council, International Union of Geodesy and Geophysics, International Union for Quaternary Research, National Association of Geoscience Teachers, National Research Council (US), Royal Meteorological Society, and World Meteorological Organization.
  3. ^ Note that the greenhouse effect produces an average worldwide temperature increase of about 33 °C (59 °F) compared to black body predictions without the greenhouse effect, not an average surface temperature of 33 °C (91 °F). The average worldwide surface temperature is about 14 °C (57 °F).

ಆಕರಗಳು[ಬದಲಾಯಿಸಿ]

  1. ೧.೦ ೧.೧ ೧.೨ ೧.೩ ೧.೪ ೧.೫ ೧.೬ IPCC (2007-05-04). "Summary for Policymakers" (PDF). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Retrieved 2009-07-03. 
  2. ೨.೦ ೨.೧ ೨.೨ Hegerl, Gabriele C.; et al. (2007). "Understanding and Attributing Climate Change" (PDF). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. "Recent estimates indicate a relatively small combined effect of natural forcings on the global mean temperature evolution of the second half of the 20th century, with a small net cooling from the combined effects of solar and volcanic forcings." 
  3. Ammann, Caspar; et al. (2007). "Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate Simulation Model" (PDF). Proceedings of the National Academy of Sciences of the United States of America 104 (10): 3713–3718. doi:10.1073/pnas.0605064103. PMID 17360418. "Simulations with only natural forcing components included yield an early 20th century peak warming of ≈0.2 °C (≈1950 AD), which is reduced to about half by the end of the century because of increased volcanism." 
  4. Royal Society (2005). "Joint science academies' statement: Global response to climate change". Retrieved 19 April 2009. 
  5. Archer, David (2005). "Fate of fossil fuel CO2 in geologic time" (PDF). Journal of Geophysical Research 110 (C9): C09S05.1–C09S05.6. doi:10.1029/2004JC002625. 
  6. ೬.೦ ೬.೧ Solomon, S., et al., S; Plattner, GK; Knutti, R; Friedlingstein, P (2009). "Irreversible climate change due to carbon dioxide emissions". Proceedings of the National Academy of Sciences 106 (6): 1704–1709. doi:10.1073/pnas.0812721106. PMID 19179281.  More than one of |last1= and |author= specified (help); More than one of |number= and |issue= specified (help)
  7. Lu, Jian; Vecchi, Gabriel A.; Reichler, Thomas (2007). "Expansion of the Hadley cell under global warming". Geophysical Research Letters 34: L06805. doi:10.1029/2006GL028443.  Unknown parameter |xauthorlink= ignored (help)
  8. Trenberth, Kevin E.; et al. (2007). "Chapter 3: Observations: Surface and Atmospheric Climate Change". IPCC Fourth Assessment Report (PDF). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. p. 244. 
  9. Hansen, James E.; et al. (2006-01-12). "Goddard Institute for Space Studies, GISS Surface Temperature Analysis". NASA Goddard Institute for Space Studies. Retrieved 2007-01-17. 
  10. "Global Temperature for 2005: second warmest year on record" (PDF). Climatic Research Unit, School of Environmental Sciences, University of East Anglia. 2005-12-15. Retrieved 2007-04-13. 
  11. "WMO statement on the status of the global climate in 2005" (PDF). World Meteorological Organization. 2005-12-15. Retrieved 2009-04-24. 
  12. Changnon, Stanley A.; Bell, Gerald D. (2000). El Niño, 1997-1998: The Climate Event of the Century. London: Oxford University Press. ISBN 0195135520. 
  13. "IPCC Fourth Assessment Report, Chapter 3". 2007-02-05. p. 237. Retrieved 2009-03-14. 
  14. Rowan T. Sutton, Buwen Dong, Jonathan M. Gregory (2007). "Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations". Geophysical Research Letters 34: L02701. doi:10.1029/2006GL028164. Retrieved 2007-09-19. 
  15. Intergovernmental Panel on Climate Change (2001). "Atmospheric Chemistry and Greenhouse Gases". Climate Change 2001: The Scientific Basis. Cambridge, UK: Cambridge University Press. 
  16. Meehl, Gerald A.; et al. (2005-03-18). "How Much More Global Warming and Sea Level Rise" (PDF). Science 307 (5716): 1769–1772. doi:10.1126/science.1106663. PMID 15774757. Retrieved 2007-02-11. 
  17. Spencer Weart (2008). "The Carbon Dioxide Greenhouse Effect". The Discovery of Global Warming. American Institute of Physics. Retrieved 21 April 2009. 
  18. IPCC (2007). "Chapter 1: Historical Overview of Climate Change Science" (PDF). IPCC WG1 AR4 Report. IPCC. pp. p97 (PDF page 5 of 36). Retrieved 21 April 2009. "To emit 240 W m–2, a surface would have to have a temperature of around –19 °C. This is much colder than the conditions that actually exist at the Earth’s surface (the global mean surface temperature is about 14 °C). Instead, the necessary –19 °C is found at an altitude about 5 km above the surface." 
  19. Kiehl, J.T. and K.E. Trenberth (1997). "Earth’s Annual Global Mean Energy Budget" (PDF). Bulletin of the American Meteorological Society 78 (2): 197–208. doi:10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2. Retrieved 21 April 2009. 
  20. Gavin Schmidt (6 Apr 2005). "Water vapour: feedback or forcing?". RealClimate. Retrieved 21 April 2009. 
  21. EPA (2008). "Recent Climate Change: Atmosphere Changes". Climate Change Science Program. United States Environmental Protection Agency. Retrieved 21 April 2009. 
  22. Neftel, A., E. Moor, H. Oeschger, and B. Stauffer (1985). "Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries". Nature 315: 45–47. doi:10.1038/315045a0. 
  23. Pearson, P.N. and M.R. Palmer, PN; Palmer, MR (2000). "Atmospheric carbon dioxide concentrations over the past 60 million years". Nature 406 (6797): 695–699. doi:10.1038/35021000. PMID 10963587.  More than one of |last1= and |author= specified (help)
  24. ೨೪.೦ ೨೪.೧ IPCC (2001). "Summary for Policymakers" (PDF). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. Retrieved 21 April 2009. 
  25. Prentice, I.C., et al. (2001). "The Carbon Cycle and Atmospheric Carbon Dioxide: SRES scenarios and their implications for future CO2 concentration". Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. Retrieved 21 April 2009. 
  26. Nakicenovic., N., et al. (2001). "An Overview of Scenarios: Resource Availability". IPCC Special Report on Emissions Scenarios. IPCC. Retrieved 21 April 2009. 
  27. Sparling, Brien (May 30, 2001). "Ozone Depletion, History and politics". NASA. Retrieved 2009-02-15. 
  28. Shindell, Drew (2006). "Role of tropospheric ozone increases in 20th-century climate change". Journal of Geophysical Research 111: D08302. doi:10.1029/2005JD006348. 
  29. Mitchell, J.F.B., et al. (2001). "Detection of Climate Change and Attribution of Causes: Space-time studies". Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. Retrieved 21 April 2009. 
  30. Hansen J., Sato M., Ruedy R., Lacis A., and Oinas V., J; Sato, M; Ruedy, R; Lacis, A; Oinas, V (2000). "Global warming in the twenty-first century: an alternative scenario". Proc. Natl. Acad. Sci. U.S.A. 97 (18): 9875–80. doi:10.1073/pnas.170278997. PMID 10944197.  More than one of |last1= and |author= specified (help)
  31. Lohmann, U. & J. Feichter (2005). "Global indirect aerosol effects: a review". Atmos. Chem. Phys. 5: 715–737. 
  32. Twomey, S. (1977). "Influence of pollution on shortwave albedo of clouds". J. Atmos. Sci. 34: 1149–1152. doi:10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2. 
  33. Albrecht, B. (1989). "Aerosols, cloud microphysics, and fractional cloudiness". Science 245 (4923): 1227–1239. doi:10.1126/science.245.4923.1227. PMID 17747885. 
  34. Ramanathan, V.; Chung, C; Kim, D; Bettge, T; Buja, L; Kiehl, JT; Washington, WM; Fu, Q; Sikka, DR; et al. (2005). "Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle". Proc. Natl. Acad. Sci. 102 (15): 5326–5333. doi:10.1073/pnas.0500656102. PMID 15749818.  More than one of |last1= and |last= specified (help); More than one of |first1= and |first= specified (help);
  35. Ramanathan, V., et al. (2008). "Report Summary". Atmospheric Brown Clouds: Regional Assessment Report with Focus on Asia. United Nations Environment Programme. 
  36. Ramanathan, V., et al. (2008). "Part III: Global and Future Implications". Atmospheric Brown Clouds: Regional Assessment Report with Focus on Asia. United Nations Environment Programme. 
  37. National Research Council (1994). Solar Influences On Global Change. Washington, D.C.: National Academy Press. p. 36. ISBN 0-309-05148-7. 
  38. Hansen, J. (2002). "Climate". Journal of Geophysical Research 107: 4347. doi:10.1029/2001JD001143.  Unknown parameter |unused_data= ignored (help)
  39. Hansen, J. (2005). "Efficacy of climate forcings". Journal of Geophysical Research 110: D18104. doi:10.1029/2005JD005776. 
  40. Scafetta, N. (2007). "Phenomenological reconstructions of the solar signature in the Northern Hemisphere surface temperature records since 1600". Journal of Geophysical Research 112: D24S03. doi:10.1029/2007JD008437. 
  41. Randel, William J. (2009). "An update of observed stratospheric temperature trends". Journal of Geophysical Research 114: D02107. doi:10.1029/2008JD010421. 
  42. Marsh, Nigel; Henrik, Svensmark (November 2000). "Cosmic Rays, Clouds, and Climate" (PDF). Space Science Reviews 94 (1–2): 215–230. doi:10.1023/A:1026723423896. Retrieved 2007-04-17. 
  43. Lockwood, Mike; Claus Fröhlich (2007). "Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature" (PDF). Proceedings of the Royal Society A 463: 2447. doi:10.1098/rspa.2007.1880. Retrieved 2007-07-21. "Our results show that the observed rapid rise in global mean temperatures seen after 1985 cannot be ascribed to solar variability, whichever of the mechanisms is invoked and no matter how much the solar variation is amplified." 
  44. T Sloan and A W Wolfendale (2008). "Testing the proposed causal link between cosmic rays and cloud cover". Environ. Res. Lett. 3: 024001 Extra |pages= or |at= (help). doi:10.1088/1748-9326/3/2/024001. 
  45. Pierce, J.R. and P.J. Adams (2009). "Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates?". Geophysical Research Letters 36: L09820. doi:10.1029/2009GL037946. 
  46. ೪೬.೦ ೪೬.೧ Soden, Brian J.; Held, Isacc M. (2005-11-01). "An Assessment of Climate Feedbacks in Coupled Ocean–Atmosphere Models". Journal of Climate (PDF) 19 (14): 3354–3360. doi:10.1175/JCLI3799.1. "Interestingly, the true feedback is consistently weaker than the constant relative humidity value, implying a small but robust reduction in relative humidity in all models on average" "clouds appear to provide a positive feedback in all models" 
  47. National Research Council (2004). Understanding Climate Change Feedbacks. Panel on Climate Change Feedbacks, Climate Research Committee. National Academies Press. ISBN 0309090725. 
  48. Stocker, Thomas F.; et al. (2001-01-20). "7.5.2 Sea Ice". Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. Retrieved 2007-02-11. 
  49. doi:10.1029/2009GL039191
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  50. Zimov, Sa; Schuur, Ea; Chapin, Fs (Jun 2006). "Climate change. Permafrost and the global carbon budget.". Science (New York, N.Y.) 312 (5780): 1612–3. doi:10.1126/science.1128908. ISSN 0036-8075. PMID 16778046. 
  51. Buesseler, Ken O.; et al. (2007-04-27). "Revisiting Carbon Flux Through the Ocean's Twilight Zone" (abstract). Science 316 (5824): 567–570. doi:10.1126/science.1137959. PMID 17463282. Retrieved 2007-11-16. 
  52. doi:10.1038/ngeo434
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  53. doi:10.1029/2001GB001829
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  54. Denman, K.L., et al. (2007). "Chapter 7, Couplings Between Changes in the Climate System and Biogeochemistry" (PDF). Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. Retrieved 2008-02-21. 
  55. Hansen, James (2000). "Climatic Change: Understanding Global Warming". One World: The Health & Survival of the Human Species in the 21st century. Health Press. Retrieved 2007-08-18. 
  56. Stocker, Thomas F.; et al. (2001). "7.2.2 Cloud Processes and Feedbacks". Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. Retrieved 2007-03-04. 
  57. Torn, Margaret; Harte, John (2006). "Missing feedbacks, asymmetric uncertainties, and the underestimation of future warming". Geophysical Research Letters 33 (10): L10703. doi:10.1029/2005GL025540. L10703. Retrieved 2007-03-04. 
  58. Harte, John; et al. (2006). "Shifts in plant dominance control carbon-cycle responses to experimental warming and widespread drought". Environmental Research Letters 1 (1): 014001. doi:10.1088/1748-9326/1/1/014001. 014001. Retrieved 2007-05-02. 
  59. Scheffer, Marten; et al. (2006). "Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change." (PDF). Geophysical Research Letters 33: L10702. doi:10.1029/2005gl025044. Retrieved 2007-05-04. 
  60. http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter9.pdf
  61. Randall, D.A., et al. (2007). "Chapter 8, Climate Models and Their Evaluation" (PDF). Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. Retrieved 2009-03-21. 
  62. Santer, B.D.; et al. (2008). "Consistency of modelled and observed temperature trends in the tropical troposphere" (PDF). International Journal of Climatology 28 (13): 1703. doi:10.1002/joc.1756. Retrieved 2008-10-22. 
  63. Stroeve, J., et al. (2007). "Arctic sea ice decline: Faster than forecast". Geophysical Research Letters 34: L09501. doi:10.1029/2007GL029703. 
  64. ೬೪.೦ ೬೪.೧ "Climate Change 2001: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change". IPCC. 2001-02-16. Retrieved 2007-03-14. 
  65. McMichael AJ, Woodruff RE, Hales S (2006). "Climate change and human health: present and future risks". Lancet 367 (9513): 859–69. doi:10.1016/S0140-6736(06)68079-3. PMID 16530580. 
  66. "Summary for Policymakers" (PDF). Climate Change 2007: Impacts, Adaptation and Vulnerability. Working Group II Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report. IPCC. 2007-04-13. Retrieved 2007-04-28. 
  67. Macey, Jennifer (September 19, 2007). "Global warming opens up Northwest Passage". ABC News. Retrieved 2007-12-11. 
  68. Knutson, Thomas R. (2008). "Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions". Nature Geoscience 1: 359. doi:10.1038/ngeo202. 
  69. Confalonieri, U.; Menne, B.; Ebi, R. (2007). "Chapter 8: Human Health". In Parry, M.L.; Canziani, O.F.; Palutikof, J.P.; van der Linden, P.J.; Hanson, C.E. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. ISBN 978-0521-88010-7. 
  70. King, Gary M.; et al.. Global Environmental Change Microbial Contributions Microbial Solutions (PDF). American Society for Microbiology. p. 7. Retrieved 2009-05-23. 
  71. Shaffer, G., S.M. Olsen and G.O.P Pederson (2009). "Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels". Nature Geoscience 2: 105–109. doi:10.1038/ngeo420. 
  72. "Carbon Cycle". NASA. Retrieved 2009-06-24. 
  73. Jacobson, Mark Z. (2005-04-02). "Studying ocean acidification with conservative, stable numerical schemes for nonequilibrium air-ocean exchange and ocean equilibrium chemistry" (PDF). Journal of Geophysical Research 110 (D7): D07302. doi:10.1029/2004JD005220. D07302. Retrieved 2007-04-28. 
  74. Caldeira, Ken; Wickett, Michael E. (2005-09-21). "Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean". Journal of Geophysical Research 110 (C09S04): 1–12. doi:10.1029/2004JC002671. Retrieved 2006-02-14. 
  75. Raven, John A.; et al. (2005-06-30). Ocean acidification due to increasing atmospheric carbon dioxide (ASP). Royal Society. Retrieved 2007-05-04. 
  76. Thomas, Chris D.; Cameron, A; Green, RE; Bakkenes, M; Beaumont, LJ; Collingham, YC; Erasmus, BF; De Siqueira, MF; Grainger, A; et al. (2004-01-08). "Extinction risk from climate change" (PDF). Nature 427 (6970): 145–138. doi:10.1038/nature02121. PMID 14712274. Retrieved 2007-03-18.  More than one of |last1= and |last= specified (help); More than one of |first1= and |first= specified (help);
  77. McLaughlin, John F.; et al. (2002-04-30). "Climate change hastens population extinctions" (PDF). PNAS 99 (9): 6070–6074. doi:10.1073/pnas.052131199. PMID 11972020. Retrieved 2007-03-29. 
  78. Botkin, Daniel B.; et al. (March 2007). "Forecasting the Effects of Global Warming on Biodiversity" (PDF). BioScience 57 (3): 227–236. doi:10.1641/B570306. Retrieved 2007-11-30. 
  79. ಜಾಗತಿಕ ತಾಪಮಾನ ಏರಿಕೆಯಿಂದ ಟಿಬೆಟ್ ಪಡೆಯುವ ಅನುಕೂಲಗಳು: ಚೀನಾದ ಅಧಿಕಾರಿ ವರದಿಯಾದ ದಿನಾಂಕ 18/ಆಗಸ್ಟ್‌/2009.
  80. Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.) (2007). "Summary for Policymakers". Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. p. 22. Retrieved 2009-05-20. 
  81. "At-a-glance: The Stern Review". BBC. 2006-10-30. Retrieved 2007-04-29. 
  82. Tol, R. and G. Yohe (2006). "A Review of the Stern Review". World Economics 7 (4): 233–250. 
  83. Mendelsohn, R. (2006-2007). "A Critique of the Stern Report". Regulation. Retrieved 2009-05-20. 
  84. Nordhaus, W. (2005). "The Economics of Climate Change, Part Two: Comments on the Stern Review. Chapter 5: William Nordhaus, Yale University, 'Opposite Ends of the Globe'". Yale Center for the Study of Globalization. Retrieved 2009-05-20. 
  85. Barker, T. (August 2008). "The economics of avoiding dangerous climate change. An editorial essay on The Stern Review". Climatic Change 89 (Volume 89, Numbers 3-4 / August, 2008): 173–194. doi:10.1007/s10584-008-9433-x. Retrieved 2009-05-20. 
  86. Cline, W. (January 5, 2008). "Comments on the Stern Review". Peter G. Peterson Institute for International Economics. Retrieved 2009-05-20. 
  87. Ackerman, F. (July 2007). "Debating Climate Economics: The Stern Review vs. Its Critics". Report to Friends of the Earth-UK. Retrieved 2009-05-20. 
  88. Terry Barker (April 14, 2008). "Full quote from IPCC on costs of climate change". FT.com. Retrieved 2008-04-14. 
  89. Dlugolecki, Andrew; et al. (2002). "Climate Risk to Global Economy" (PDF). CEO Briefing: UNEP FI Climate Change Working Group. United Nations Environment Programme. Retrieved 2007-04-29. 
  90. "Thomas Schelling: Developing Countries Will Suffer Most from Global Warming" (PDF). Resources 164. Retrieved 2008-03-01. 
  91. doi:10.1088/1748-9326/4/1/014012
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  92. "Kyoto Protocol Status of Ratification" (PDF). United Nations Framework Convention on Climate Change. 2006-07-10. Retrieved 2007-04-27. 
  93. "Twenty-sixth session and Ad Hoc Working Group on Further Commitments for Annex I Parties under the Kyoto Protocol (AWG), Third session". United Nations Framework Convention on Climate Change. Retrieved 2009-06-21. 
  94. ೯೪.೦ ೯೪.೧ Adam, David (14 April 2009). "World will not meet 2C warming target, climate change experts agree". Guardian News and Media Limited. Retrieved 2009-04-14. "The poll comes as UN negotiations to agree a new global treaty to regulate carbon pollution gather pace in advance of a key meeting in Copenhagen in December. Officials will try to agree a successor to the Kyoto protocol, the first phase of which expires in 2012." 
  95. "Climate Control: a proposal for controlling global greenhouse gas emissions" (PDF). Sustento Institute. Retrieved 2007-12-10. 
  96. Monbiot, George. "Rigged - The climate talks are a stitch-up, as no one is talking about supply.". Retrieved 2007-12-22. 
  97. "Barack Obama and Joe Biden: New Energy for America". Retrieved 2008-12-19. 
  98. ೯೮.೦ ೯೮.೧ "Summary for Policymakers" (PDF). Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 2007-05-04. Retrieved 2007-12-09. 
  99. Boland, John J. (1997). "Assessing Urban Water Use and the Role of Water Conservation Measures under Climate Uncertainty". Climatic Change 37 (1): 157–176. doi:10.1023/A:1005324621274. 
  100. Adams, R.M., et al. (1990). "Global climate change and US agriculture". Nature 345: 219. doi:10.1038/345219a0. 
  101. Nicholls, R (2004). "Coastal flooding and wetland loss in the 21st century: changes under the SRES climate and socio-economic scenarios". Global Environmental Change 14: 69. doi:10.1016/j.gloenvcha.2003.10.007. 
  102. ಲವ್‌ಲಾಕ್‌, ಜೇಮ್ಸ್‌ ಮತ್ತು ಅಲ್ಲೆಬಿ, ಮೈಕೆಲ್‌, "ದ ಗ್ರೀನಿಂಗ್‌ ಆಫ್‌ ಮಾರ್ಸ್‌ " 1984
  103. Vanlieshout, M, R.S. Kovats, M.T.J. Livermore and P. Martens (2004). "Climate change and malaria: analysis of the SRES climate and socio-economic scenarios". Global Environmental Change 14: 87. doi:10.1016/j.gloenvcha.2003.10.009. 
  104. Hulme, P.E. (2005). "Adapting to climate change: is there scope for ecological management in the face of a global threat?". Journal of Applied Ecology 42 (5): 784. doi:10.1111/j.1365-2664.2005.01082.x. 
  105. "Climate Change: Adapting to the inevitable". IMechE. Retrieved 2009-03-07. 
  106. William J. Broad (27 June 2006). "How to Cool a Planet (Maybe)". New York Times. Retrieved 10 March 2009. "...a controversial field known as geoengineering, which means rearranging the Earth's environment on a large scale to suit human needs and promote habitability" 
  107. Keith, D.W., M. Ha-Duong and J.K. Stolaroff (2006). "Climate Strategy with CO2 Capture from the Air". Climatic Change 74: 17. doi:10.1007/s10584-005-9026-x. 
  108. Crutzen, Paul J. (2006). "Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma?". Climatic Change 77: 211. doi:10.1007/s10584-006-9101-y. 
  109. Weart, Spencer (2006). "The Public and Climate Change". In Weart, Spencer. The Discovery of Global Warming. American Institute of Physics.  Unknown parameter |access-date= ignored (|accessdate= suggested) (help)
  110. Revkin, Andrew (2007-04-01). "Poor Nations to Bear Brunt as World Warms". The New York Times. Retrieved 2007-05-02. 
  111. Brahic, Catherine (2006-04-25). "China's emissions may surpass the US in 2007". New Scientist. Retrieved 2007-05-02. 
  112. Max, Arthur. "US envoy says China wants top line US technology in exchange for reining in CO2 emissions". Star Tribune. Associated Press. Retrieved 2009-06-26. 
  113. "China now top carbon polluter". BBC News. 2008-04-14. Retrieved 2008-04-22. 
  114. "Group: China tops world in CO2 emissions". USA Today. Associated Press. 2007-06-20. Retrieved 2007-10-16. 
  115. "Group: China surpassed US in carbon emissions in 2006: Dutch report". livemint.com. Reuters. 2007-06-20. Retrieved 2007-10-16. 
  116. "Chinese object to climate draft". BBC. 2008-05-01. Retrieved 2009-05-21. 
  117. Mufson, Steven (2007-06-06). "In Battle for U.S. Carbon Caps, Eyes and Efforts Focus on China". The Washington Post. Retrieved 2009-05-21. 
  118. Casey, Michael (2007-12-07). "China Says West Should Deal With Warming". Newsvine. Retrieved 2009-06-06. 
  119. IANS (2009-02-05). "India can’t be exempt from mandatory greenhouse gas emission cap: John Kerry". Thaindian.com. Retrieved 2009-06-24. 
  120. Pelham, Brett (2009-04-22). "Awareness, Opinions About Global Warming Vary Worldwide". Gallup. Retrieved 2009-07-14. 
  121. "Summary of Findings". Little Consensus on Global Warming. Partisanship Drives Opinion. Pew Research Center. 2006-07-12. Retrieved 2007-04-14. 
  122. Blair, Tony (2009-07-03). "Breaking the Climate Deadlock". Kosovo Times. Retrieved 2009-07-03. 
  123. Richards, Holly (2009-07-02). "Energy bill causing some tension among U.S. officials". Coshocton Tribune. Retrieved 2009-07-03. 
  124. Begley, Sharon (2007-08-13). "The Truth About Denial". Newsweek. Retrieved 2007-08-13. 
  125. Adams, David (2006-09-20). "Royal Society tells Exxon: stop funding climate change denial". The Guardian. Retrieved 2007-08-09. 
  126. "Exxon cuts ties to global warming skeptics". MSNBC. 2007-01-12. Retrieved 2007-05-02. 
  127. Sandell, Clayton (2007-01-03). "Report: Big Money Confusing Public on Global Warming". ABC. Retrieved 2007-04-27. 
  128. "New Report Provides Authoritative Assessment of National, Regional Impacts of Global Climate Change" (PDF) (Press release). U.S. Global Change Research Program. 2009-06-06. Retrieved 2009-06-27. 
  129. "Greenpeace: Exxon still funding climate skeptics". USA Today. 2007-05-18. Retrieved 2007-07-09. 
  130. "Global Warming Resolutions at U.S. Oil Companies Bring Policy Commitments from Leaders, and Record High Votes at Laggards" (Press release). Ceres. 2004-04-28. Retrieved 2007-07-27. 
  131. de Granados, Oriana Zill (2007-04-24). "The Doubters of Global Warming". Frontline. Retrieved 2009-07-31. 
  132. Revkin, Andrew C. (2009-03-08). "Skeptics Dispute Climate Worries and Each Other". New York Times. Retrieved 2009-07-31. 
  133. Dyson, Freeman; Brockman, John (Editor) (2007-08-08). "Heretical thoughts about science and society". Edge - the third culture. Retrieved 2009-07-31. 

ಹೆಚ್ಚಿನ ಓದಿಗಾಗಿ[ಬದಲಾಯಿಸಿ]

ಹೊರಗಿನ ಕೊಂಡಿಗಳು[ಬದಲಾಯಿಸಿ]

ಸಂಶೋಧನೆ

ಶೈಕ್ಷಣಿಕ