ಸಂಯೋಜನೆಗಳು

ವಿಕಿಪೀಡಿಯ ಇಂದ
ಇಲ್ಲಿಗೆ ಹೋಗು: ಸಂಚರಣೆ, ಹುಡುಕು

ಗಣಿತ ಕ್ಷೇತ್ರದಲ್ಲಿ "ಸಂಯೋಜನೆಗಳು" (ಕಾಂಬಿನೇಷನ್ಸ್) ಎನ್ನುವ ಪದವನ್ನು ಒಂದು ಸಂಗ್ರಹದಿಂದ ವಸ್ತುಗಳನ್ನು ಎಷ್ಟು ವಿಧಗಳಲ್ಲಿ ಆಯ್ಕೆ ಮಾಡಿಕೊಳ್ಳಬಹುದು ಎಂಬುದನ್ನು ಸೂಚಿಸಲು ಬಳಸುತ್ತಾರೆ. ಇದಕ್ಕೆ "ಸಂಚಯಗಳು" ಎಂದು ಕೂಡಾ ಕರೆಯಬಹುದು. ಉಹಾಹರಣೆಗೆ ಒಂದು ಸಂಗ್ರಹದಲ್ಲಿ ನಾಲ್ಕು ಹೂಗಳಿವೆ - ಮಲ್ಲಿಗೆ, ಸೇವಂತಿಗೆ, ಗುಲಾಬಿ ಮತ್ತು ಸಂಪಿಗೆ. ಇವುಗಳಲ್ಲಿ ಯಾವುದಾದರೂ ಎರಡು ಹೂಗಳನ್ನು ಆರಿಸಬೇಕು ಎಂದುಕೊಳ್ಳಿ. ಒಟ್ಟು ಆರು ಸಾಧ್ಯತೆಗಳಿವೆ ಎಂಬುದನ್ನು ನಾವು ನೋಡಬಹುದು. {ಮಲ್ಲಿಗೆ, ಸೇವಂತಿಗೆ}, {ಮಲ್ಲಿಗೆ, ಗುಲಾಬಿ}, {ಮಲ್ಲಿಗೆ, ಸಂಪಿಗೆ}, {ಸೇವಂತಿಗೆ, ಗುಲಾಬಿ}, {ಸೇವಂತಿಗೆ, ಸಂಪಿಗೆ}, {ಗುಲಾಬಿ, ಸಂಪಿಗೆ}. {ಮಲ್ಲಿಗೆ, ಸೇವಂತಿಗೆ} ಮತ್ತು {ಸೇವಂತಿಗೆ, ಮಲ್ಲಿಗೆ} ಇವುಗಳಲ್ಲಿ ಯಾವ ವ್ಯತ್ಯಾಸವೂ ಇಲ್ಲ ಎಂಬುದನ್ನೂ ಗಮನಿಸಿ. ಕ್ರಮಸಂಚಯಗಳು ಅಥವಾ ಪರ್ಮ್ಯುಟೇಷನ್ಸ್ ಎಂದರೆ ಹೂವುಗಳನ್ನು ಜೋಡಿಸುವ ಕ್ರಮವೂ ಮುಖ್ಯ. ನಾಲ್ಕು ಹೂವುಗಳಲ್ಲಿ ಎರಡರ ಕ್ರಮಸಂಚಯಗಳ ಸಂಖ್ಯೆ ೧೨ ಎಂಬುದನ್ನು ನೀವು ಊಹಿಸಬಹುದು. ಒಂದು ಸಂಗ್ರಹದಲ್ಲಿ n ವಸ್ತುಗಳಿದ್ದರೆ ಆ ಸಂಗ್ರಹದಿಂದ k ವಸ್ತುಗಳನ್ನು ಆರಿಸಿಕೊಳ್ಳಲು ಎಷ್ಟು ವಿಧಗಳಿವೆ ಎಂಬುದನ್ನು ಎಂದು ಅಥವಾ ಎಂದು ಬರೆಯುತ್ತೇವೆ. ಸಂಗ್ರಹದಲ್ಲಿರುವ ವಸ್ತುಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಲು n ವಿಧಗಳಿವೆ ಎಂಬುದನ್ನು ಗಮನಿಸಿ. ಹೀಗಾಗಿ . ಹೀಗೇ ಸಂಗ್ರಹದಲ್ಲಿರುವ ಎಲ್ಲಾ ವಸ್ತುಗಳನ್ನೂ ಆಯ್ದುಕೊಳ್ಳಲು ಒಂದೇ ವಿಧಾನ. ಹೀಗಾಗಿ .

ಇದನ್ನು ಹೀಗೂ ಬರೆಯುತ್ತೇವೆ - ಇಲ್ಲಿ ಸಂಯೋಜನೆಗಳ ವಿಷಯದಲ್ಲಿ ಕೆಳಕಂಡ ಸಮೀಕರಣವನ್ನು ಗಮನಿಸಿ.

ಇದನ್ನು ಬಳಸಿ ಎಷ್ಟೆಂದು ಕಂಡುಹಿಡಿಯಬಹುದು. ಪ್ಯಾಸ್ಕಲ್ ತ್ರಿಕೋನವನ್ನು ರಚಿಸಲು ಈ ಸಮೀಕರಣ ಸಹಾಯಕ[೧]. ಈ ಸಮೀಕರಣ ಬಳಸುವಾಗ k ಶೂನ್ಯವಾದರೆ ಎಂಬುದನ್ನು ನೆನಪಿಡಬೇಕು. ಕೆಳಕಂಡ ಸಮೀಕರಣವನ್ನು ಬಳಸಿ ಕೂಡಾ ಸಂಯೋಜನೆಗಳ ಸಂಖ್ಯೆಯನ್ನು ಕಂಡುಹಿಡಿಯಬಹುದು

.

ಗಣಕವಿಜ್ಞಾನದಲ್ಲಿ ಕೆಳಗಿನ ಸೂತ್ರ ಬಳಸಿ ಸಂಯೋಜನೆಗಳ ಸಂಖ್ಯೆಯನ್ನು ಲೆಕ್ಕ ಹಾಕಬಹುದು.

.

ಉದಾಹರಣೆ[ಬದಲಾಯಿಸಿ]

೫೨ ಇಸ್ಪೀಟ್ ಎಲೆಗಳಲ್ಲಿ ಐದನ್ನು ಎಷ್ಟು ರೀತಿಗಳಲ್ಲಿ ಆರಿಸಬಹುದು?

ಉಲ್ಲೇಖಗಳು[ಬದಲಾಯಿಸಿ]

  1. ಬೈನಾಮಿಯಲ್ ಥಿಯರಂ ಮತ್ತು ಪ್ಯಾಸ್ಕಲನ ತ್ರಿಕೋನ