ಆಧಾರಭಾವನೆಯ ಪರೀಕ್ಷೆ

ವಿಕಿಪೀಡಿಯ ಇಂದ
Jump to navigation Jump to search

ಆಧಾರಭಾವನೆಯ ಪರೀಕ್ಷೆ ಎಂದರೆ ಆಧಾರಭಾವನೆಯ (ಹೈಪಾಥಿಸಿಸ್) ತಥ್ಯಾಂಶ ಕಂಡುಹಿಡಿಯಲು ಸಂಖ್ಯಾಶಾಸ್ತ್ರದ ನೆರವಿನಿಂದ ನಡೆಸುವ ಪರೀಕ್ಷೆ. ಅನುಕ್ರಮ_ವಿಶ್ಲೇಷಣೆ

ನೇಮಾನ್-ಪಿಯರ್ಸನ್ನರ ಸಿದ್ಧಾಂತ[ಬದಲಾಯಿಸಿ]

ವಿಜ್ಞಾನದ ಮುನ್ನಡೆ ಆಧಾರಭಾವನೆಗಳನ್ನು ಅವಲಂಬಿಸಿದೆ. ಕೆಲವೊಂದು ಆಧಾರಭಾವನೆಗಳ ತಥ್ಯಾಂಶ ಕಂಡುಹಿಡಿಯಲು 6996ಅನೇಕ ಪ್ರಯೋಗಗಳ ಮೂಲಕ ಸಾಧ್ಯ. ಒಂದೊಂದು ಪ್ರಯೋಗ ಒಂದೊಂದು ಉತ್ತರವನ್ನು ಕೊಟ್ಟರೆ ಈ ಪ್ರಯೋಗಗಳಿಂದ ತಥ್ಯಾಂಶವನ್ನು ಬಟ್ಟಿ ಇಳಿಸಲು ಸಂಖ್ಯಾಶಾಸ್ತ್ರದ ನೆರವು ಬೇಕು. ಉದಾಹರಣೆಗೆ, ಒಬ್ಬ ಕೃಷಿ ಪಂಡಿತ ಒಂದು ಜಾತಿಯ ಬೀಜಕ್ಕಿಂತ ಇನ್ನೊಂದು ಜಾತಿಯ ಬೀಜ ಉತ್ತಮ ಬೆಳೆ ಕೊಡುವುದೆಂದು ಆಧಾರಭಾವನೆಯನ್ನು ಅವಲಂಬಿಸಬಹುದು. ಇದನ್ನೇ ಪ್ರಾಯೋಗಿಕವಾಗಿ ಪರೀಕ್ಷಿಸಲು ಮತ್ತು ಪ್ರಯೋಗಗಳ ಸಾರಾಂಶವನ್ನು ಸಂಖ್ಯಾರೂಪದಲ್ಲಿ ನಿರೂಪಿಸಲು ಸಾಧ್ಯವಿರುವುದರಿಂದ ಈ ಆಧಾರಭಾವನೆಯನ್ನು ಸಾಂಖ್ಯಕ ಆಧಾರಭಾವನೆ ಎನ್ನಬಹುದು. ಇಂಥ ಭಾವನೆಗಳನ್ನು ಸಾಂಖ್ಯಕವಾಗಿ ಪರೀಕ್ಷಿಸಲು ಸಾಧ್ಯವಿದೆ.[೧]

ಸಂಭವಚರಗಳು[ಬದಲಾಯಿಸಿ]

ಒಂದು ಬಲ್ಬಿನ ಕಂಪೆನಿಯವರು 10 ಬಲ್ಬುಗಳ ಮೇಲೆ ಪ್ರಯೋಗ ನಡೆಸಿ ತಮ್ಮ ಕಂಪೆನಿಯ ಬಲ್ಬುಗಳು 1000 ಗಂಟೆಗಳಿಗಿಂತ ಹೆಚ್ಚು ಕಾಲ ಬಾಳುವುವು ಎಂದು ಘೋಷಿಸಬಹುದು. ಒಂದು ಸಕ್ಕರೆ ಕಾರ್ಖಾನೆಯವರು ಕೆಲವು ಕಬ್ಬಿನ ತುಂಡುಗಳನ್ನು ಪರೀಕ್ಷಿಸಿ, ಅವುಗಳ ಆಧಾರದ ಮೇಲಿಂದ ಒಬ್ಬ ರೈತ ತಂದ ಕಬ್ಬು ಉತ್ತಮ ದರ್ಜೆಯದೇ ಇಲ್ಲವೆ ಸಾಧಾರಣ ದರ್ಜೆಯದೇ ಎಂದು ನಿರ್ಣಯಿಸಬಹುದು. ಕಂಪೆನಿ ತಯಾರಿಸಿದ ಬಲ್ಬುಗಳ ಸರಾಸರಿ ಜೀವಿತಾವಧಿ ಒಂದು ಗೊತ್ತಿಲ್ಲದ ಪ್ರಾಚಲ (ಪೆರಾಮೀಟರ್). ಇದರ ಬೆಲೆ 1000ಕ್ಕಿಂತ ಹೆಚ್ಚು ಎಂಬುದು ನಮ್ಮ ಆಧಾರಭಾವನೆ ನಮೂದಿಸುವ ಬೆಲೆ. ಪ್ರಾಯೋಗಿಕವಾಗಿ ಇದನ್ನು ಅನೇಕ ಬಲ್ಬುಗಳ ಜೀವಿತಾವಧಿಯನ್ನು ಪರೀಕ್ಷಿಸಿ ಅವುಗಳ ಆಧಾರದಿಂದ ಸಮರ್ಥಿಸಬೇಕಾಗಿರುವುದರಿಂದ, ಈ ಆಧಾರಭಾವನೆ ಸಾಂಖ್ಯಕವಾದದ್ದು. ಪ್ರಯೋಗಾನಂತರ ಅದರ ಫಲಿತಾಂಶವನ್ನು ಅನುಸರಿಸಿ ಈ ಭಾವನೆಯನ್ನು ನಾವು ಸ್ವೀಕರಿಸಬಹುದು ಅಥವಾ ತ್ಯಜಿಸಬಹುದು. ಹೀಗೆ ಪ್ರಯೋಗಗಳ ಸಹಾಯದಿಂದ ಒಂದು ಆಧಾರಭಾವನೆಯ ತಥ್ಯಾಂಶ ಪರೀಕ್ಷಿಸಿ ಒಂದು ನಿಶ್ಚಯಕ್ಕೆ ಬರುವಾಗ ನಾವು ಎರಡು ವಿಧದ ತಪ್ಪುಗಳನ್ನು ಮಾಡಬಹುದು. ಒಂದನೆಯದು, ಆಧಾರಭಾವನೆ ನಿಜವಿರುವಾಗ ಅದು ತಪ್ಪೆಂದು ನಿಶ್ಚಯಿಸುವುದು; ಇನ್ನೊಂದು ಅದು ತಪ್ಪಾಗಿರುವಾಗ ನಿಜವೆಂದು ಹೇಳುವುದು. ಒಂದು ಕೋರ್ಟಿನಲ್ಲಿ ಹಾಜರು ಮಾಡಲ್ಪಟ್ಟ ಕೈದಿಯನ್ನು ಪರೀಕ್ಷಿಸಿ ಅಥವಾ ಅವನು ನಿರ್ದೋಷಿ ಇದ್ದರೂ ಅವನ ಮೇಲೆ ಶಿಕ್ಷೆಯನ್ನು ವಿಧಿಸಬಹುದು ಅಥವಾ ತಪ್ಪು ಮಾಡಿದ್ದರೂ ಅವನನ್ನು ನಿರ್ದೋಷಿಯೆಂದು ಬಿಟ್ಟುಬಿಡಬಹುದು: ಈ ತಪ್ಪುಗಳನ್ನು ಅನುಕ್ರಮವಾಗಿ ಒಂದನೆಯ ಮತ್ತು ಎರಡನೆಯ ವಿಧದ ತಪ್ಪುಗಳೆಂದು ಕರೆಯುವರು.ಪ್ರಯೋಗದಿಂದ ದೊರೆಯುವ ಬೆಲೆಗಳು ಸಂಭವಚರಗಳಾಗಿರುವುದರಿಂದ (ಸ್ಟೊಕೇಸ್‍ಟಿಕ್ ವೇರಿಯೆಬಲ್ಸ್) ಈ ಎರಡು ತರದ ತಪ್ಪುಗಳನ್ನು ನಾವು ಮಾಡುವ ಸಂಭವವಿದೆ. ಇಂಥವೆರಡನ್ನು ಮಾಡುವ ಸಂಭವಗಳನ್ನೂ ನಾವು ಆದಷ್ಟು ಕಡಿಮೆ ಮಾಡಬೇಕು. ಆಗ ಮಾತ್ರ ನಮ್ಮ ನಿರ್ಣಯ ಉತ್ತಮವೆನಿಸುವುದು. ಈ ಸಂದರ್ಭದಲ್ಲಿ ನಾವು ಇನ್ನೊಂದು ವಿಚಾರವನ್ನು ಗಮನಿಸಬೇಕು. ಒಂದು ವೇಳೆ ನಮ್ಮ ಆಧಾರಭಾವನೆ ತಪ್ಪಾದರೆ ಬೇರಾವುದೋ ಒಂದು ಪರ್ಯಾಯ ಆಧಾರಭಾವನೆ ಸರಿಯಿರಬಹುದು ಎಂದು ನಮ್ಮ ವಿಚಾರವಾಗಿರುತ್ತದೆ. ಬಲ್ಬುಗಳ ಸರಾಸರಿ ಜೀವಿತ 1000 ಗಂಟೆ ಎಂಬುದು ಮೂಲ ಆಧಾರಭಾವನೆಯಾದರೆ ಅದು 800 ಗಂಟೆ ಎಂಬುದು ಪರ್ಯಾಯ ಆಧಾರಭಾವನೆ ಆಗಿರಬಹುದು. ಮೂಲ ಆಧಾರಭಾವನೆ ತಪ್ಪಾದಲ್ಲಿ ಈ ಪರ್ಯಾಯಭಾವನೆ ನಿಜವಾಗಿರುವುದೆಂದು ನಾವು ಪರಿಗಣಿಸುತ್ತೇವೆ. ಒಂದು ಸಾಂಖ್ಯಕ ನಿರ್ಧಾರ ಮೊದಲನೆಯ ವಿಧದ ತಪ್ಪನ್ನಾಗಿ ಮಾಡುವಂತೆ ಮೂಲ ಆಧಾರಭಾವನೆಯನ್ನು ಇಟ್ಟುಕೊಳ್ಳುತ್ತೇವೆ ಮತ್ತು ಮೊದಲನೆಯ ವಿಧದ ತಪ್ಪಿನ ಸಂಭವವನ್ನು ಒಂದು ಮಿತಿಯಲ್ಲಿಟ್ಟುಕೊಂಡು (5% ಅಥವಾ 1%) ಎರಡನೆಯ ವಿಧದ ತಪ್ಪನ್ನು ಕನಿಷ್ಠಗೊಳಿಸುವಂತೆ ನಾವು ನಮ್ಮ ಸಾಂಖ್ಯಕ ನಿಶ್ಚಯವನ್ನು ಕೈಗೊಳ್ಳುತ್ತೇವೆ.[೨]

ಸಂಭವಚರದ ಬೆಲೆ ಸ್ವೀಕರಣ ಪ್ರದೇಶ[ಬದಲಾಯಿಸಿ]

ಒಂದು ಸಾಂಖ್ಯಕ ನಿಶ್ಚಯವನ್ನು ಈ ರೀತಿ ವಿವರಿಸಬಹುದು : ನಾವು ನೋಡಬಹುದಾದ ಸಂಭವಚರಗಳ ವಿವಿಧ ಬೆಲೆಗಳನ್ನೂ ನಮೂನಾಕಾಶದ (ಸ್ಯಾಂಪಲ್‍ಸ್ಪೇಸ್) ಬಿಂದುಗಳಾಗಿ ನಿರ್ದೇಶಿಸಬಹುದು. ನಾವು ನೋಡಿದ ಬೆಲೆ ನಮೂನಾಕಾಶದ ಒಂದು ಭಾಗದಲ್ಲಿ ಬಿದ್ದರೆ ಮೂಲ ಆಧಾರಭಾವನೆ ನಿಜವೆಂದೂ, ಇಲ್ಲದೇ ಇದ್ದರೆ ಪರ್ಯಾಯ ಆಧಾರಭಾವನೆ ನಿಜವೆಂದು ತಿಳಿಯುತ್ತೇವೆ. ನಮೂನಾಕಾಶದ ಈ ಭಾಗಗಳನ್ನು ಸ್ವೀಕರಣ ಪ್ರದೇಶ (ಏಕ್‍ಸೆಪ್ಟೆನ್ಸ್ ರೀಜನ್) ಮತ್ತು ಸಂದಿಗ್ಧ (ಕ್ರಿಟಿಕಲ್) ಅಥವಾ ನಿರಾಕರಣ (ರಿಜೆಕ್ಷನ್) ಪ್ರದೇಶಗಳೆಂದು ಕರೆಯುತ್ತೇವೆ. ಒಂದು ಸಂಭವಚರದ ಬೆಲೆ, ಮೂಲ ಆಧಾರಭಾವನೆ ನಿಜವಾಗಿದ್ದಲ್ಲಿ, ಸಂದಿಗ್ಧ ಪ್ರದೇಶದಲ್ಲಿ ಬೀಳುವ ಸಂಭವ ಮೊದಲನೆಯ ವಿಧದ ತಪ್ಪಿನ ಸಂಭವಕ್ಕೆ ಸಮವಾಗಿರುತ್ತದೆ. ಈ ಸಂಭವ (5% ಅಥವಾ 1%) ಆಗಿರುವಂತೆ ಮತ್ತು ಪರ್ಯಾಯ ಆಧಾರಭಾವನೆ ನಿಜವಾಗಿದ್ದಲ್ಲಿ ಸಂಭವಚರದ ಬೆಲೆ ಸ್ವೀಕರಣ ಪ್ರದೇಶದಲ್ಲಿ ಬೀಳುವ ಸಂಭವ ಕನಿಷ್ಠವಾಗಿರುವಂತೆ ಸಂದಿಗ್ಧ ಪ್ರದೇಶವನ್ನು ಆರಿಸಬೇಕು. ಪರ್ಯಾಯ ಆಧಾರಭಾವನೆ ನಿಜವಾಗಿದ್ದಲ್ಲಿ, ಸಂಭವಚರದ ಬೆಲೆಗಳು ಸಂದಿಗ್ದ ಪ್ರದೇಶದಲ್ಲಿ ಬೀಳುವ ಸಂಭವಕ್ಕೆ ಆಧಾರಭಾವನಾಪರೀಕ್ಷೆಯ ಸಾಮಥ್ರ್ಯ (ಪವರ್) ಎನ್ನುತ್ತೇವೆ. ಇದು ಎರಡನೆಯ ವಿಧದ ತಪ್ಪನ್ನು ಮಾಡದಿರುವುದರ ಸಂಭವವಾಗಿದೆ. ಅತ್ಯಂತ ಸಾಮಥ್ರ್ಯಯುತವಾದ ಪರೀಕ್ಷೆಯನ್ನು ಕಂಡುಹಿಡಿಯುವುದೇ ನಮ್ಮ ಉದ್ದೇಶ. ಇದೇ ನೇಮಾನ್-ಪಿಯರ್ಸನ್ನರ ಸಾಂಖ್ಯಕ ಆಧಾರಭಾವನಾಪರೀಕ್ಷೆಯ ಮೂಲತತ್ತ್ವ.

ಒಂದೇ ರೀತಿಯ ಅತ್ಯಂತ ಸಾಮಥ್ರ್ಯಯುತವಾದ ಪರೀಕ್ಷೆ (ಒಂ.ರೀ.ಅ.ಸಾ. ಯೂನಿಫಾರ್ಮ್‍ಲಿ ಮೋಸ್ಟ್ ಪವರ್‍ಫುಲ್-ಟೆಸ್ಟ್): ಪ್ರಾಚಲದ ಬೆಲೆಯನ್ನು ನಿಶ್ಚಿತವಾಗಿ ಒಂದು ಆಧಾರಭಾವನೆ ನಮೂದಿಸಿದಲ್ಲಿ ಅದನ್ನು ಆಧಾರಭಾವನೆ ಎಂದು ಹೇಳುತ್ತೇವೆ. ಪರ್ಯಾಯ ಭಾವನೆಯೂ ಸರಳವಾಗಿದ್ದಲ್ಲಿ ಅಂಥ ಆಧಾರಭಾವನೆಗಳ ಪರೀಕ್ಷೆಯ ಪ್ರಶ್ನೆಯನ್ನು ನೇಮಾನ್ ಮತ್ತು ಪಿಯರ್ಸನರು ಪೂರ್ಣವಾಗಿ ಬಿಡಿಸಿರುವರು. ಇದನ್ನು ನೇಮಾನ್-ಪಿಯರ್ಸನ್ನರ ಮೂಲ ಉಪಪ್ರಮೇಯ (ಫಂಡಮೆಂಟಲ್‍ಲೆಮ್ಮ) ಎಂದು ಕರೆಯುತ್ತಾರೆ. ಮೂಲ ಆಧಾರಭಾವನೆ ಸರಿಯಾಗಿದ್ದಲ್ಲಿ ಸಂಭವಚರದ ಸಾಂದ್ರತೆ ಠಿo. ಪರ್ಯಾಯ ಆಧಾರಭಾವನೆ ಸರಿಯಾಗಿದ್ದಲ್ಲಿ ಅದು ಠಿ1 ಆಗಿದ್ದರೆ, (=[x:ಠಿ1>ಞಠಿ0] ...

ನಿರಾಕರಣ ಪ್ರದೇಶವುಳ್ಳ ಪರೀಕ್ಷೆ ಅತ್ಯಂತ ಸಾಮಥ್ರ್ಯಯುತ ಪರೀಕ್ಷೆ[ಬದಲಾಯಿಸಿ]

ಠಿ0 (x) ಜx=ಚಿ ಮತ್ತು ಠಿ1 (x) ಜx= ಗರಿಷ್ಠವಾಗುವಂತೆ ( ವನ್ನು ಆರಿಸಿಕೊಳ್ಳಬೇಕಾಗಿರುವುದರಿಂದ ಈ ಉಪಪ್ರಮೇಯವನ್ನು ಗಣಿತ ಶಾಸ್ತ್ರದಲ್ಲಿಯ ಲೆಗ್ರಾಂeóïನ ರೀತಿಯಿಂದ ಸುಲಭವಾಗಿ ಸಾಧಿಸಬಹುದು. (1)ರಲ್ಲಿ ಞಯನ್ನು ಠಿ0 (x) ಜx=ಚಿ ಆಗಿರುವಂತೆ ಆರಿಸುತ್ತೇವೆ.

ಅಪಕ್ಷಪಾತಿ ಪರೀಕ್ಷೆ (ಅನ್‍ಬಯಸ್ಡ್ ಟೆಸ್ಟ್)[ಬದಲಾಯಿಸಿ]

ಒಂದು ಆಧಾರಭಾವನೆಯ ಒಂ.ರೀ.ಅ.ಸಾ. ಪರೀಕ್ಷೆ ನಮಗೆ ದೊರೆತಲ್ಲಿ ಅದರ ಪರೀಕ್ಷೆಯ ಪ್ರಶ್ನೆಯನ್ನು ಪೂರ್ಣವಾಗಿ ಬಿಡಿಸಿದಂತಾಯಿತು. ಆದರೆ ಇಂಥ ಪರೀಕ್ಷೆ ಸಿಗುವುದು ಅಪೂರ್ವ. ಮೇಲಿನ ಉದಾಹರಣೆಯಲ್ಲಿ, ಪ್ರಮಾಪಿ ವಿಚಲನೆ ಏಕವೆಂದು ನಮಗೆ ತಿಳಿಯದಿದ್ದಲ್ಲಿ ಅಥವಾ ಪರ್ಯಾಯ ಆಧಾರಭಾವನೆ (((0 ಆಗಿದ್ದಲ್ಲಿ, ಇಂಥ ಒಂ.ರೀ.ಅ.ಸಾ ಪರೀಕ್ಷೆ ಸಿಗುವುದಿಲ್ಲ. ಇಂಥ ಸಂದರ್ಭಗಳಲ್ಲಿ ಉಪಯೋಗವಾಗುವಂತೆ ನೇಮಾನ್-ಪಿಯರ್ಸನ್ನರು ಅಪಕ್ಷಪಾತಿ ಪರೀಕ್ಷೆಯ ವಿಚಾರವನ್ನು ಮುಂದಿಟ್ಟಿರುವರು. ಒಂದು ಪರೀಕ್ಷೆ ನಿಜವಾದ ಆಧಾರಭಾವನೆಯನ್ನು ಸರಿಯೆಂದು ಹೇಳುವ ಸಂಭವಕ್ಕಿಂತ, ತಪ್ಪಾದ ಆಧಾರಭಾವನೆಯನ್ನು ಸರಿಯೆಂದು ಹೇಳುವ ಸಂಭವ ಕಡಿಮೆಯಾದಲ್ಲಿ ಅದನ್ನು ಅಪಕ್ಷಪಾತಿ ಎನ್ನುವರು. ಎಲ್ಲ ಪರೀಕ್ಷೆಗಳಲ್ಲಿಯೇ ಉತ್ತಮವಾದ ಒಂ.ರೀ.ಅ.ಸಾ. ಪರೀಕ್ಷೆ ಸಿಗದಿದ್ದರೂ ಅಪಕ್ಷಪಾತಿ ಪರೀಕ್ಷೆಗಳಲ್ಲಿ ಅತ್ಯುತ್ತಮವಾದ ಅಪಕ್ಷಪಾತಿ ಒಂ.ರೀ.ಅ.ಸಾ. ಪರೀಕ್ಷೆ ಸಿಗಬಹುದು.[೩]

ಮೇಲಿನ ಉದಾಹರಣೆಯಲ್ಲಿ ಚರದ ಬೆಲೆ ((2)ತಿಳಿದಿಲ್ಲವಾದರೆ ಅದರ ಸ್ಥಾನದಲ್ಲಿ ನಿದರ್ಶಕಚರದ ಬೆಲೆಯನ್ನು (82) ಇಟ್ಟು ಎಂಬುದನ್ನು ನಿರಾಕರಣ ಪ್ರದೇಶವನ್ನಾಗಿ ಆರಿಸಬಹುದು. ಇದರಿಂದ ಸಿಗುವ ಪರೀಕ್ಷೆ

ಎಂಬ ಕ್ಲಿಷ್ಟ ಆಧಾರಭಾವನೆಯನ್ನು ಏ : (=(1, (>0 ಎಂಬ ಕ್ಲಿಷ್ಟ ಆಧಾರಭಾವನೆಯೊಂದಿಗೆ ಪರೀಕ್ಷಿಸುವ ಒಂ.ರೀ.ಅ.ಸಾ. ಅಪಕ್ಷಪಾತಿ ಪರೀಕ್ಷೆಯಾಗಿದೆ. ಅಂತೆಯೇ ಊ:(=(0, (>0 ಎಂಬ ಮೂಲ ಆಧಾರಭಾವನೆಯನ್ನು ಏ:(((0, (>0 ಎಂಬ ನಿರಾಕರಣ ಪ್ರದೇಶವುಳ್ಳ ಪರೀಕ್ಷೆ ಒಂ.ರೀ.ಅ.ಸಾ. ಅಪಕ್ಷಪಾತಿ ಪರೀಕ್ಷೆ.

ಪರ್ಯಾಯ ಆಧಾರಭಾವನೆಯ ಮೇರೆಗೆ ( ಪಡೆಯುವ ಬೆಲೆಗಳನ್ನು x- ನಿರ್ದೇಶಕವಾಗಿಯೂ ಸಾಮಥ್ರ್ಯವನ್ನು ಥಿ- ನಿರ್ದೇಶಕವಾಗಿಯೂ ಆರಿಸಿ ಬರೆದ ರೇಖೆಗೆ ಪರೀಕ್ಷೆಯ ಸಾಮಥ್ರ್ಯ ರೇಖೆ (ಪವರ್‍ಕರ್ವ್) ಎಂದು ಹೆಸರು. ಊ: (=(0ಯ ಒಂ.ರೀ.ಅ.ಸಾ. ಅಪಕ್ಷಪಾತಿ ಪರೀಕ್ಷೆಯ ಸಾಮಥ್ರ್ಯ ರೇಖೆಯನ್ನು ಎಳೆದಲ್ಲಿ, ಇದರ ಕನಿಷ್ಠ ಬೆಲೆ (=(0 ಎಂಬ ಬಿಂದುವಿನಲ್ಲಿರುವುದು ಏ:(((0 ಎಂಬ ಪರ್ಯಾಯ ಆಧಾರಭಾವನೆ) (2)ನೆಯ ಫಲಿತಾಂಶದಲ್ಲಿ ಹೇಳಿದ ಘಾತೀಯ ಕುಟುಂಬಕ್ಕೆ (ಎಕ್ಸ್‍ಪೊನೆನ್ಶಿಯಲ್ ಫ್ಯಾಮಿಲಿ) ಸೇರಿದ ಸಂಭವಸಾಂದ್ರತೆಯುಳ್ಳ ಸಂಭವಚರಗಳಿಗೆ ಸಂಬಂಧಿಸಿದ ಆಧಾರಭಾವನೆಗಳನ್ನು ಪರೀಕ್ಷಿಸಲು ಮತ್ತು ಅನೇಕ ಪ್ರಾಚಲಗಳಿದ್ದಲ್ಲಿ ಅವುಗಳಲ್ಲಿ ಒಂದು ಪ್ರಾಚಲದ ಬೆಲೆಯನ್ನು ನಮೂದಿಸಿ ಉಳಿದುವನ್ನು ಹೇಳದೆ ಇರುವ ಕ್ಲಿಷ್ಟ ಆಧಾರಭಾವನೆಗಳನ್ನು ಪರೀಕ್ಷಿಸುವುದಕ್ಕೂ ಒಂ.ರೀ.ಅ.ಸಾ. ಅಪಕ್ಷಪಾತಿ ಪರೀಕ್ಷೆ ಇರುವುದೆಂದು ಅವನು ಹೇಳಿದ್ದಾನೆ. ಉದಾಹರಣೆಗೆ, ಎರಡು ಪ್ರಸಾಮಾನ್ಯ ಅಥವಾ ಪೋಸೋನ್ ಸಂಭವಚರಗಳ ನಿರೀಕ್ಷಿತ ಬೆಲೆಗಳು ಒಂದೇ ಆಗಿರುವುದೇ ಎಂಬುದನ್ನು ಪರೀಕ್ಷಿಸಲು ನಮಗೆ ಒಂ.ರೀ.ಅ.ಸಾ. ಅಪಕ್ಷಪಾತಿ ಪರೀಕ್ಷೆ ಇದೆ.

ಅನುಕ್ರಮ ವಿಶ್ಲೇಷಣೆ: ವಾಲ್ಡ್‍ನು ಮೊದಲು ಮಂಡಿಸಿದ ಈ ಪರೀಕ್ಷಾವಿಧಾನ ಇದೇ ಶೀರ್ಷಿಕೆಯ ಅಡಿಯಲ್ಲಿ ಪ್ರತ್ಯೇಕ ಲೇಖನವಾಗಿ ಕೊಡಲಾಗಿದೆ.

ಬೃಹತ್ ನಮೂನಾಪರೀಕ್ಷೆ (ಲಾರ್ಜ್ ಸ್ಯಾಂಪಲ್ ಟೆಸ್ಟ್) ಮತ್ತು ಸಾಧ್ಯತಾ ನಿಷ್ಪತ್ತಿ ಪರೀಕ್ಷೆ (ಲೈಕ್‍ಲೀಹುಡ್ ರೇಷಿಯೋ ಟೆಸ್ಟ್)[ಬದಲಾಯಿಸಿ]

ಸಂಭವಚರದ ಸಾಂದ್ರತೆ ಘಾತೀಯ ಕುಟುಂಬಕ್ಕೆ ಸೇರಿದಾಗ ಇಲ್ಲವೇ ಸಂಭವಚರ ಬೇರಾವುದೇ ಆದ ಸುಲಭ ಸಾಂದ್ರತೆಯನ್ನು ಹೊಂದಿದಾಗ, ಸಾಂದ್ರತೆಯಲ್ಲಿನ ಪ್ರಾಚಲದ ಮೇಲಿನ ಆಧಾರಭಾವನಗೆಳನ್ನು ಪರೀಕ್ಷಿಸಲು, ಮೇಲೆ ವಿವರಿಸಿದ ನಿಶ್ಚಿತ ಪರೀಕ್ಷೆ (ಎಕ್‍ಸೇಕ್ಟ್ ಟೆಸ್ಟ್) ನಮಗೆ ದೊರೆಯುವುವು. ಆದರೆ ಸಂಭವಚರದ ಸಾಂದ್ರತೆ ಕಠಿಣವಾಗಿದ್ದಲ್ಲಿ ಈ ಸಂಭವಚರದ ಪರೀಕ್ಷೆಗಳನ್ನು ಪಡೆಯಲು ಕಷ್ಟವಾಗುತ್ತದೆ. ಈ ಸಂದರ್ಭದಲ್ಲಿ ನಮೂನೆಯ ಗಾತ್ರ ದೊಡ್ಡದಾಗಿದ್ದಲ್ಲಿ ನಮೂನೆ ಪ್ರಸಾಮಾನ್ಯ ವಿತರಣೆಯಿಂದ ಬಂದುದೆಂದು ಪರಿಗಣಿಸಿ ಪರೀಕ್ಷೆಯನ್ನು ಮಾಡಿದರೆ ದೊಡ್ಡ ತಪ್ಪಾಗುವುದಿಲ್ಲ; ಏಕೆಂದರೆ ಕೇಂದ್ರಮಿತಿಪ್ರಮೇಯದ (ಸೆಂಟ್ರಲ್ ಲಿಮಿಟ್ ತೀಯೊರೆಂ) ಪ್ರಕಾರ ಯಾವುದೇ ವಿತರಣೆಯಿಂದ ಆಯದ್ದ ನಮೂನಾಮಾನದ ವಿತರಣೆ ನಮೂನಾಗಾತ್ರ ವೃದ್ಧಿಯಾದಂತೆ ಪ್ರಸಾಮಾನ್ಯ ವಿತರಣೆಯನ್ನು ಸಮೀಪಿಸುವುದು. ನಿಶ್ಚಿತ ಪರೀಕ್ಷೆ ತಿಳಿದಿದ್ದರೂ, ನಮೂನಾಗಾತ್ರ ದೊಡ್ಡದಾದಲ್ಲಿ ಪರೀಕ್ಷಾಪ್ರಮಾಣದ (ಟೆಸ್ಟ್ ಕ್ರೈಟೀರಿಯನ್) ವಿತರಣೆ ಪ್ರಸಾಮಾನ್ಯ ವಿತರಣೆ ಎಂದು ಪರಿಗಣಿಸಬೇಕಾಗುವುದು. ಇಂಥ ಪರೀಕ್ಷೆಗಳನ್ನು ಬೃಹತ್ ನಮೂನಾಪರೀಕ್ಷೆ ಅಥವಾ ಅನಂತಸ್ಪರ್ಶಕೀಯ (ಅಸಿಂಪ್ಟೋಟಿಕ್) ಪರೀಕ್ಷೆ ಎಂದು ಕರೆಯುವರು.[೪]

ಬೃಹತ್ ನಮೂನಾಪರೀಕ್ಷೆಗಳಲ್ಲಿ ಅತಿ ಮುಖ್ಯವಾದುದು ಸಾಧ್ಯತಾ ನಿಷ್ಪತ್ತಿ ಪರೀಕ್ಷೆ. ನೇಮಾನ್-ಪಿಯರ್ಸನ್ನರ ಮೂಲ ಉಪಪ್ರಮೇಯದ ಮೇರೆಗೆ, ಆಧಾರಭಾವನೆಗಳು ಸರಳವಾಗಿದ್ದಲ್ಲಿ ಅತ್ಯಂತ ಸಾಮಥ್ರ್ಯಯುತವಾದ ಪರೀಕ್ಷೆಯ ನಿರಾಕರಣ [(ಠಿ1/ಠಿ0s)>ಛಿ] ಪ್ರದೇಶದಲ್ಲಿ ಆಗಿರುವುದು. ಆಧಾರಭಾವನೆಗಳು ಕ್ಲಿಷ್ಟವಾಗಿದ್ದಲ್ಲಿ ನಿರಾಕರಣ ಪ್ರದೇಶವನ್ನು ಈ ರೀತಿ ಆರಿಸಬಹುದು: ಗರಿಷ್ಠ ಠಿ(x) mಚಿx ಠಿ(x)

    ಏ		                                    ಏ

= ------------- > ಛಿ

ಗರಿಷ್ಠ ಠಿ(x) mಚಿx ಠಿ(x)

ಊ.		                                   ಊ

ಹೆಚ್ಚಾಗಿ ಏ, ಊನ್ನು ಒಳಗೊಂಡಿರುವಾಗ ಈ ಮೇಲಿನ ಸಾಧ್ಯತಾ ನಿಷ್ಪತ್ತಿ ಪರೀಕ್ಷೆಯನ್ನು ಉಪಯೋಗಿಸುವರು. ಆಗ ಮೇಲಿನ ನಿಷ್ಪತ್ತಿ 1ಕ್ಕಿಂತ ದೊಡ್ಡದಾಗಿರುತ್ತದೆ. ಈ ನಿಷ್ಪತ್ತಿಯ ಅನಂತಸ್ಪರ್ಶಕೀಯ ವಿತರಣೆಯನ್ನು ಕಂಡುಹಿಡಿದು ಛಿ ಯ ಬೆಲೆಯನ್ನು ನಿರ್ದಿಷ್ಟಪಡಿಸಬಹುದು. ಗರಿಷ್ಠ (ಠಿ(x) ನ್ನು ಕಂಡುಹಿಡಿಯಲು, ನಿರ್ದಿಷ್ಟಪಡಿಸದ ಪ್ರಾಚಲಗಳ ಬೆಲೆಗಳಿಗೆ, ಸಾಧ್ಯತೆಯನ್ನು ಗರಿಷ್ಠ ಮಾಡುವ ಅಂದಾಜಿನ ಬೆಲೆಗಳನ್ನು ಬದಲಾಗಿ ಇಡುತ್ತೇವೆ. ಈ ಸಾಧ್ಯತಾನಿಷ್ಪತ್ತಿ ಪರೀಕ್ಷೆಯನ್ನು ಬಹುಚರ ವಿತರಣೆಗಳಿಗೆ ಸಂಬಂಧಿಸಿದ ಆಧಾರಭಾವನೆಗಳನ್ನು ಪರೀಕ್ಷಿಸಲು ಉಪಯೋಗಿಸುತ್ತೇವೆ.

ಕೆಲವೊಂದು ವಿತರಣೆಗಳಲ್ಲಿನ ಪ್ರಾಚಲದ ಗರಿಷ್ಠ ಸಾಧ್ಯತಾ ಅಂದಾಜನ್ನು ಕಂಡುಹಿಡಿಯುವುದು ಕಷ್ಟ. ನೇಮಾನ್ ಅತ್ಯುತ್ತಮ ಅನಂತಸ್ಪರ್ಶಕ (ಆಪ್‍ಟಿಮಲ್ ಅಸಿಂಪ್ಟೋಟಿಕ್) ಪರೀಕ್ಷೆಯನ್ನು ಉಪಯೋಗಿಸಲು ಸೂಚಿಸಿರುವನು. ಈ ಪರೀಕ್ಷೆಯಲ್ಲಿ ಊ ನಿರ್ದಿಷ್ಟಗೊಳಿಸದ ಪ್ರಾಚಲಗಳಿಗೆ ( ಟಿ ಸುಸಂಗತ ಅಂದಾಜಿನ ಬೆಲೆಯನ್ನು ಬದಲಾಗಿ ಇಟ್ಟರೆ ಸಾಕು.

(2- ಪರೀಕ್ಷೆಯೂ ಒಂದು ಬೃಹತ್ ನಮೂನಾಪರೀಕ್ಷೆ. ಸಂಭವಚರದ ಬೆಲೆಗಳು ವಿರತವಾಗಿದ್ದಲ್ಲಿ, ಊನ ಮೇರೆಗೆ ನಿರೀಕ್ಷಿಸಿದ ಬೆಲೆಗಳೂ ಪರಾಂಬರಿಸಿದ ಬೆಲೆಗಳೂ ಒಂದನ್ನೊಂದು ಹೋಲುವುದೇ ಇಲ್ಲವೇ ಎಂಬುದನ್ನು ಪರೀಕ್ಷಿಸುವುದಕ್ಕೆ ಉದಾ: ಒಂದು ಅನುಷಂಗತೆಕೋಷ್ಟಕದಲ್ಲಿನ (ಕನ್ಟಿನ್ಜೆನ್ಸಿ ಟೇಬಲ್) ಎರಡು ಗುಣಗಳು ಸ್ವತಂತ್ರವಾಗಿವೆಯೇ ಎಂಬುದನ್ನು ಪರೀಕ್ಷಿಸುವುದಕ್ಕೆ ಈ ಪರೀಕ್ಷೆಯನ್ನು ಉಪಯೋಗಿಸುವರು.

ಅಚರ ಪರೀಕ್ಷೆ (ಇನ್‍ವೇರಿಯೆಂಟ್ ಟೆಸ್ಟ್) ಮತ್ತು ಚರ ವಿಶ್ಲೇಷಣ (ಅನಾಲಿಸಿಸ್ ಆಫ್ ವೇರಿಯನ್ಸ್)[ಬದಲಾಯಿಸಿ]

ಮೇಲೆ ವಿವರಿಸಿದಂತೆ ಅತ್ಯಂತ ಸಾಮಥ್ರ್ಯಯುತವಾದ ಪರೀಕ್ಷೆ ಇಲ್ಲದಿರುವಾಗ, ನಾವು ಅಪಕ್ಷಪಾತಿ ಅಥವಾ ಅನಭಿನತ ಪರೀಕ್ಷೆಗಳಲ್ಲಿನ ಅತ್ಯಂತ ಸಾಮಥ್ರ್ಯಯುತವಾದ ಪರೀಕ್ಷೆಯಿಂದ ಸಮಾಧಾನಗೊಳ್ಳಬೇಕಾಯಿತು. ಆದರೆ ಅನಭಿನತ ಪರೀಕ್ಷೆಗೆ ಅಷ್ಟು ಮಹತ್ತ್ವವನ್ನೇಕೆ ಕೊಡಬೇಕು ಎಂಬ ಪ್ರಶ್ನೆಗೆ ನಮ್ಮ ಹತ್ತಿರ ಉತ್ತರವಿಲ್ಲ. ಆ ಕಾರಣದಿಂದ ಅದರ ಬದಲಿಗೆ ಬೇರೆ ಯಾವುದಾದರೂ ಒಂದು ಗುಣವನ್ನು ಪರೀಕ್ಷೆಗಳಲ್ಲಿ ನಿರೀಕ್ಷಿಸಬಹುದಲ್ಲದೇ ಎಂದು ಇತ್ತೀಚೆಗೆ ಅನೇಕರು ವಿಚಾರ ಮಾಡತೊಡಗಿರುವರು. ಇವರಲ್ಲಿ ಸ್ಟೈನ್ ಅಚರತೆಯ ಗುಣಕ್ಕೆ ಮಹತ್ತ್ವ ನೀಡಿದ್ದಾನೆ. ಮೂಲ ಮತ್ತು ಪರ್ಯಾಯ ಆಧಾರಭಾವನೆಗಳು ಪ್ರಾಚಲಗಳ ಕೆಲವೊಂದು ಪರಿವರ್ತನೆಗಳಿಂದ (ಟ್ರಾನ್ಸ್‍ಫಾರ್ಮೇಷನ್ಸ್) ವ್ಯತ್ಯಾಸವಾಗದಿದ್ದ ಪಕ್ಷದಲ್ಲಿ ಆ ಆಧಾರಭಾವನೆಗಳ ಪರೀಕ್ಷೆ ಕೂಡ ಇದೇ ರೀತಿಯ ಅಚರತೆಯ ಗುಣಗಳನ್ನು ಹೊಂದಿರಬೇಕೆಂಬುದೇ ಇವನ ವಾದ. ಇಂಥ ಅಚರತೆಯ ಗುಣಗಳನ್ನೊಳಗೊಂಡ ಪರೀಕ್ಷೆಗಳಲ್ಲಿ ಅತ್ಯಂತ ಸಾಮಥ್ರ್ಯಯುತವಾದ ಪರೀಕ್ಷೆಯನ್ನು ನಾವು ಉತ್ತಮ ಪರೀಕ್ಷೆ ಎಂದು ಪರಿಗಣಿಸಬಹುದು. ಉದಾ: ( ನಿರೀಕ್ಷಿತ ಬೆಲೆಯಾಗಿಯೂ, ( 2 ಚರನೀಯವಾಗಿಯೂ ಇರುವ ಪ್ರಸಾಮಾನ್ಯ ವಿತರಣೆಯಿಂದ ಒಂದು ನಮೂನೆ ಆರಿಸಲ್ಪಟ್ಟಿರಲಿ. ಇಲ್ಲಿ ((,( 2)ಗಳಿಗೆ ((x,82)ಗಳನ್ನು ನೋಡಿದರೆ ಸಾಕು (ಸಫಿಶಿಯಂಟ್) [ಊ:(/(< ಅಥವಾ =(0 ] ಎಂಬ ಮೂಲ ಆಧಾರಭಾವನೆಯನ್ನು ನಾವು ಪರೀಕ್ಷಿಸಬೇಕಾದರೆ, ಪರೀಕ್ಷಾ ಪ್ರಮಾಣ ((x,82) ದ ಉತ್ಪನ್ನವಾಗಿರಬೇಕು. xi ಗಳನ್ನು ಒಂದೇ ಅಂಕೆಯಿಂದ ಗುಣಿಸಿದರೆ ಊ ವ್ಯತ್ಯಾಸವಾಗುವುದಿಲ್ಲ. ಇದೇ ಗುಣಪರೀಕ್ಷಾ ಪ್ರಮಾಣದಲ್ಲಿಯೂ ಇರಬೇಕಾದರೆ ಅದು (x/82 ನ ಒಂದು ಉತ್ಪನ್ನವಾಗಿರಬೇಕು. ಇವುಗಳಿಂದ ದೊರೆಯುವ ಪರೀಕ್ಷೆಗಳಲ್ಲಿ ಅತ್ಯಂತ ಸಾಮಥ್ರ್ಯಯುತವಾದ ಪರೀಕ್ಷೆಯನ್ನು ನಾವು ಆರಿಸಬೇಕು. ಈ ಪರೀಕ್ಷೆ ಸ್ಟೂಡೆಂಟನ ಣ-ವಿತರಣೆಯ ಮೇಲಿನ ಪರೀಕ್ಷೆ. ಅಂತೆಯೇ ಅನೇಕ ನಮೂನೆಗಳು ಒಂದೇ ನಿರೀಕ್ಷಿತ ಬೆಲೆಯುಳ್ಳ ಪ್ರಸಾಮಾನ್ಯ ವಿತರಣೆಯಿಂದ ಬಂದಿರುವುವೇ ಎಂದು ಕಂಡುಹಿಡಿಯಲು ಸ್ನೆಡೆಕರನ ಈ-ವಿತರಣೆಯನ್ನು ಉಪಯೋಗಿಸಬೇಕೆಂದು ಅಚರತೆಯ ಆಧಾರದಿಂದಲೂ ಹೇಳಬಹುದು.[೫]

ನಾವು ಚರವಿಶ್ಲೇಷಣೆಯಲ್ಲಿ ಉಪಯೋಗಿಸುವ ಪರೀಕ್ಷೆ ಈ ಅಚರತೆಯ ಗುಣವನ್ನು ಪಡೆದಿದೆ. ಇದು ಒಂ.ರೀ.ಅ.ಸಾ. ಅಚರಪರೀಕ್ಷೆಯಾಗಿದೆ. xi ಗಳು ((0,(1,............,(ಞ) ಯ ಏಕಘಾತಿಕ ಉತ್ಪನ್ನಗಳು ನಿರೀಕ್ಷಿತ ಬೆಲೆಯಾಗಿರುವ ಪ್ರಸಾಮಾನ್ಯ ವಿತರಣೆಯಿಂದ ಬಂದಿರಲಿ. ((0,(1,............,(ಞ) ಯ ಒಂದು ಅಥವಾ ಅನೇಕ ಏಕಘಾತ ಫಲಗಳ ಬೆಲೆಗಳನ್ನು ನಿರ್ದಿಷ್ಟಪಡಿಸುವ ಆಧಾರಭಾವನೆಗಳನ್ನು ಪರೀಕ್ಷಿಸಲು ನಾವು ಈ-ಪರೀಕ್ಷೆಯನ್ನು ಉಪಯೋಗಿಸುತ್ತೇವೆ. ಈ-ಪರೀಕ್ಷೆ ಅಚರತೆಯಿಲ್ಲದೆ ಬೇರೆ ಅನೇಕ ಉತ್ತಮಗುಣಗಳನ್ನು ಪಡೆದಿರುವುದು.

ಅಪ್ರಾಚಲ ಪರೀಕ್ಷೆ (ನಾನ್‍ಪೆರಾಮೆಟ್ರಿಕ್ ಟೆಸ್ಟ್)[ಬದಲಾಯಿಸಿ]

ಈವರೆಗೆ ನಾವು ಘಿ ನ ಸಂಭವ ವಿತರಣೆ ( ಪ್ರಾಚಲದ ಮೇಲೆ ಹೊಂದಿಕೊಂಡಿದೆ ಎಂದು ಕಲ್ಪಿಸಿದ್ದೆವು. ಸಂಭವ ಸಾಂದ್ರತೆಯ ರೂಪ (ಪ್ರಸಾಮಾನ್ಯ, ಗಾಮ ಇತ್ಯಾದಿ) ತಿಳಿದಿದ್ದು ಆ ರೂಪದಲ್ಲಿ ಸೇರಿರುವ ಪ್ರಾಚಲಗಳ ಬೆಲೆಗಳು ತಿಳಿದಿಲ್ಲ ಎಂದು ಊಹಿಸಿದ್ದೆವು. ಸಂಭವ ಸಾಂದ್ರತೆಯ ರೂಪವೇ ತಿಳಿಯದಿದ್ದಲ್ಲಿ ( ನ ಬಗೆಗಿನ ಪರೀಕ್ಷೆ ಪ್ರಾಚಲದ ಪರೀಕ್ಷೆ ಎನಿಸುವುದು. ಈ ಪರೀಕ್ಷೆಗಳನ್ನು ಮಾಡುವಾಗ ಸಂಭವಚರಗಳ ಬೆಲೆಗಳ ಬದಲಾಗಿ ಅವುಗಳ ಸ್ಥಾನ (ರ್ಯಾಂಕ್) ಅಥವಾ ಸಂಜ್ಞೆಗಳನ್ನು (ಸೈನ್) ಮಾತ್ರ ಎಣಿಸುವುದರಿಂದ ಪರೀಕ್ಷೆಯನ್ನು ಮಾಡುವುದು ಸುಲಭ. ಆದ್ದರಿಂದ ಈ ಪರೀಕ್ಷೆಗಳನ್ನು ಬಹು ವೇಗದಿಂದ ನಡೆಸಬಹುದು.

ಉದಾಹರಣೆಗೆ, ಎರಡು ನಮೂನೆಗಳು ಒಂದೇ ಸಂಭವ ಸಾಂದ್ರತೆಯುಳ್ಳವುಗಳೋ (ಊ) ಅಥವಾ ಎರಡನೆಯ ನಮೂನೆಯ ಬೆಲೆಗಳು ಮೊದಲನೆಯ ನಮೂನೆಯ ಬೆಲೆಗಳಿಗಿಂತ ಹೆಚ್ಚಾಗಿವೆಯೋ (ಏ) ಎಂಬುದನ್ನು ತಿಳಿಯಬೇಕಾಗಿದೆ. ಈ ನಮೂನೆಗಳು ಪ್ರಸಾಮಾನ್ಯ ವಿತರಣೆಯನ್ನು ಹೊಂದಿವೆ ಎಂದು ನಮಗೆ ತಿಳಿದಿದ್ದರೆ, ನಾವು ಸ್ಟೂಡೆಂಟನ ಣ-ವಿತರಣೆಯನ್ನು ಉಪಯೋಗಿಸಬಹುದು. ಹಾಗೆಂದು ತಿಳಿಯದಿದ್ದರೆ ವಿಲ್ಕೊಕ್ಸನನ ಎರಡು ನಮೂನೆಗಳ ಪರೀಕ್ಷೆ ಎಂಬ ಅಪ್ರಾಚಲ ಪರೀಕ್ಷೆಯನ್ನು ಉಪಯೋಗಿಸಬಹುದು. ಎರಡೂ ನಮೂನೆಗಳ ಬೆಲೆಗಳನ್ನು ಆರೋಹಣ ಕ್ರಮದಲ್ಲಿಟ್ಟು, ಅದರಲ್ಲಿ ಎರಡನೆಯ ನಮೂನೆ ಬೆಲೆಗಳ ಸ್ಥಾನಗಳ ಮೊತ್ತ ಹೆಚ್ಚಾಗಿದ್ದಲ್ಲಿ ನಾವು ಏ ಯನ್ನು ನಿಜವೆಂದು ನಂಬುತ್ತೇವೆ. ಇಲ್ಲವಾದರೆ ಊನ್ನು ಸರಿಯೆಂದು ಸ್ವೀಕರಿಸುತ್ತೇವೆ. ಒಂದು ನಮೂನೆ ಸಮಾಂಗ ವಿತರಣೆ (ಸಿಮೆಟ್ರಿಕ್ ಡಿಸ್‍ಟ್ರಿಬ್ಯೂಷನ್) [೬]ಇರುವ ಆಕಾಶದಿಂದ ಆಯ್ದುದೇ ಇಲ್ಲವೇ ಎಂಬಿತ್ಯಾದಿಗಳನ್ನು ಪರೀಕ್ಷಿಸುವುದಕ್ಕೂ ಅಪ್ರಾಚಲರ ಪರೀಕ್ಷೆ ಇದೆ. ಮಧ್ಯರೇಖಾ ಪರೀಕ್ಷೆ (ಮೀಡಿಯನ್ ಟೆಸ್ಟ್) ಸಂಜ್ಞಾಪರೀಕ್ಷೆ (ಸೈನ್ ಟೆಸ್ಟ್) ಇವು ಬಹಳ ಜನಪ್ರಿಯವಾದ ಅಪ್ರಾಚಲ ಪರೀಕ್ಷೆಗಳು.


ಉಲ್ಲೇಖಗಳು[ಬದಲಾಯಿಸಿ]

  1. https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/hypothesis-testing/
  2. https://explorable.com/hypothesis-testing
  3. https://www.encyclopediaofmath.org/index.php/Unbiased_test
  4. https://www.statisticshowto.datasciencecentral.com/likelihood-ratio-tests/
  5. https://corporatefinanceinstitute.com/resources/knowledge/accounting/variance-analysis/
  6. https://www.statisticshowto.datasciencecentral.com/symmetric-distribution-2/